mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* Update README.md * Update README.md * Update README.md * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add evaluation calculate time and fix some bugs * Update classification __init__ * Move to ppseg * Add segmentation doc * Add PaddleClas infer.py * Update PaddleClas infer.py * Delete .infer.py.swp * Add PaddleClas infer.cc * Update README.md * Update README.md * Update README.md * Update infer.py * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleSeg doc and infer.cc demo * Update README.md * Update README.md * Update README.md Co-authored-by: Jason <jiangjiajun@baidu.com>
236 lines
8.2 KiB
C++
236 lines
8.2 KiB
C++
#include "fastdeploy/vision/segmentation/ppseg/model.h"
|
|
#include "fastdeploy/vision.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace segmentation {
|
|
|
|
PaddleSegModel::PaddleSegModel(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option,
|
|
const Frontend& model_format) {
|
|
config_file_ = config_file;
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool PaddleSegModel::Initialize() {
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (cfg["Deploy"]["transforms"]) {
|
|
auto preprocess_cfg = cfg["Deploy"]["transforms"];
|
|
for (const auto& op : preprocess_cfg) {
|
|
FDASSERT(op.IsMap(),
|
|
"Require the transform information in yaml be Map type.");
|
|
if (op["type"].as<std::string>() == "Normalize") {
|
|
std::vector<float> mean = {0.5, 0.5, 0.5};
|
|
std::vector<float> std = {0.5, 0.5, 0.5};
|
|
if (op["mean"]) {
|
|
mean = op["mean"].as<std::vector<float>>();
|
|
}
|
|
if (op["std"]) {
|
|
std = op["std"].as<std::vector<float>>();
|
|
}
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
|
|
|
} else if (op["type"].as<std::string>() == "Resize") {
|
|
const auto& target_size = op["target_size"];
|
|
int resize_width = target_size[0].as<int>();
|
|
int resize_height = target_size[1].as<int>();
|
|
is_resized = true;
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(resize_width, resize_height));
|
|
}
|
|
}
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::Preprocess(
|
|
Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<int, 2>>* im_info) {
|
|
for (size_t i = 0; i < processors_.size(); ++i) {
|
|
if (processors_[i]->Name().compare("Resize") == 0) {
|
|
auto processor = dynamic_cast<Resize*>(processors_[i].get());
|
|
int resize_width = -1;
|
|
int resize_height = -1;
|
|
std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
|
|
if (is_vertical_screen && (resize_width > resize_height)) {
|
|
if (processor->SetWidthAndHeight(resize_height, resize_width)) {
|
|
FDERROR << "Failed to set Resize processor width and height "
|
|
<< processors_[i]->Name() << "." << std::endl;
|
|
}
|
|
}
|
|
}
|
|
if (!(*(processors_[i].get()))(mat)) {
|
|
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {static_cast<int>(mat->Height()),
|
|
static_cast<int>(mat->Width())};
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1);
|
|
output->name = InputInfoOfRuntime(0).name;
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::Postprocess(
|
|
FDTensor& infer_result, SegmentationResult* result,
|
|
std::map<std::string, std::array<int, 2>>* im_info) {
|
|
// PaddleSeg has three types of inference output:
|
|
// 1. output with argmax and without softmax. 3-D matrix CHW, Channel
|
|
// always 1, the element in matrix is classified label_id INT64 Type.
|
|
// 2. output without argmax and without softmax. 4-D matrix NCHW, N always
|
|
// 1, Channel is the num of classes. The element is the logits of classes
|
|
// FP32
|
|
// 3. output without argmax and with softmax. 4-D matrix NCHW, the result
|
|
// of 2 with softmax layer
|
|
// Fastdeploy output:
|
|
// 1. label_map
|
|
// 2. score_map(optional)
|
|
// 3. shape: 2-D HW
|
|
FDASSERT(infer_result.dtype == FDDataType::INT64 ||
|
|
infer_result.dtype == FDDataType::FP32,
|
|
"Require the data type of output is int64 or fp32, but now it's " +
|
|
Str(infer_result.dtype) + ".");
|
|
result->Clear();
|
|
|
|
if (infer_result.shape.size() == 4) {
|
|
FDASSERT(infer_result.shape[0] == 1, "Only support batch size = 1.");
|
|
// output without argmax
|
|
result->contain_score_map = true;
|
|
utils::NCHW2NHWC<float_t>(infer_result);
|
|
}
|
|
|
|
// for resize mat below
|
|
FDTensor new_infer_result;
|
|
Mat* mat = nullptr;
|
|
if (is_resized) {
|
|
cv::Mat temp_mat;
|
|
FDTensor2FP32CVMat(temp_mat, infer_result, result->contain_score_map);
|
|
|
|
// original image shape
|
|
auto iter_ipt = (*im_info).find("input_shape");
|
|
FDASSERT(iter_ipt != im_info->end(),
|
|
"Cannot find input_shape from im_info.");
|
|
int ipt_h = iter_ipt->second[0];
|
|
int ipt_w = iter_ipt->second[1];
|
|
|
|
mat = new Mat(temp_mat);
|
|
|
|
Resize::Run(mat, ipt_w, ipt_h, -1, -1, 1);
|
|
mat->ShareWithTensor(&new_infer_result);
|
|
new_infer_result.shape.insert(new_infer_result.shape.begin(), 1);
|
|
result->shape = new_infer_result.shape;
|
|
} else {
|
|
result->shape = infer_result.shape;
|
|
}
|
|
int out_num =
|
|
std::accumulate(result->shape.begin(), result->shape.begin() + 3, 1,
|
|
std::multiplies<int>());
|
|
// NCHW remove N or CHW remove C
|
|
result->shape.erase(result->shape.begin());
|
|
result->Resize(out_num);
|
|
if (result->contain_score_map) {
|
|
// output with label_map and score_map
|
|
float_t* infer_result_buffer = nullptr;
|
|
if (is_resized) {
|
|
infer_result_buffer = static_cast<float_t*>(new_infer_result.Data());
|
|
} else {
|
|
infer_result_buffer = static_cast<float_t*>(infer_result.Data());
|
|
}
|
|
// argmax
|
|
utils::ArgmaxScoreMap(infer_result_buffer, result, with_softmax);
|
|
result->shape.erase(result->shape.begin() + 2);
|
|
} else {
|
|
// output only with label_map
|
|
if (is_resized) {
|
|
float_t* infer_result_buffer =
|
|
static_cast<float_t*>(new_infer_result.Data());
|
|
for (int i = 0; i < out_num; i++) {
|
|
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
|
|
}
|
|
} else {
|
|
const int64_t* infer_result_buffer =
|
|
reinterpret_cast<const int64_t*>(infer_result.Data());
|
|
for (int i = 0; i < out_num; i++) {
|
|
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
|
|
}
|
|
}
|
|
}
|
|
delete mat;
|
|
mat = nullptr;
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> processed_data(1);
|
|
|
|
std::map<std::string, std::array<int, 2>> im_info;
|
|
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {static_cast<int>(mat.Height()),
|
|
static_cast<int>(mat.Width())};
|
|
im_info["output_shape"] = {static_cast<int>(mat.Height()),
|
|
static_cast<int>(mat.Width())};
|
|
|
|
if (!Preprocess(&mat, &(processed_data[0]), &im_info)) {
|
|
FDERROR << "Failed to preprocess input data while using model:"
|
|
<< ModelName() << "." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<FDTensor> infer_result(1);
|
|
if (!Infer(processed_data, &infer_result)) {
|
|
FDERROR << "Failed to inference while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!Postprocess(infer_result[0], result, &im_info)) {
|
|
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace segmentation
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|