mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
114 lines
4.0 KiB
C++
114 lines
4.0 KiB
C++
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <cuda_fp16.h>
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
|
#include <cuda_bf16.h>
|
|
#endif
|
|
|
|
#include <cute/tensor.hpp>
|
|
#include <cute/arch/cluster_sm90.hpp> // For cute::elect_one_sync()
|
|
|
|
#include <cutlass/array.h>
|
|
#include <cutlass/cutlass.h>
|
|
#include <cutlass/numeric_conversion.h>
|
|
#include <cutlass/numeric_types.h>
|
|
|
|
|
|
using namespace cute;
|
|
|
|
template<typename T>
|
|
struct PackedHalf;
|
|
|
|
template<>
|
|
struct PackedHalf<cutlass::half_t> {
|
|
using Type = __half2;
|
|
};
|
|
|
|
template<>
|
|
struct PackedHalf<cutlass::bfloat16_t> {
|
|
using Type = nv_bfloat162;
|
|
};
|
|
|
|
|
|
template <typename To_type, typename Engine, typename Layout>
|
|
__forceinline__ __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
|
|
using From_type = typename Engine::value_type;
|
|
constexpr int numel = decltype(size(tensor))::value;
|
|
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
|
|
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
|
|
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
|
|
}
|
|
|
|
template <int numel>
|
|
__forceinline__ __device__ void convert_c4_2_fp8(const int32_t * src, int32_t * dst1, int32_t * dst2) {
|
|
#pragma unroll
|
|
for (int i = 0; i < numel; ++i) {
|
|
dst1[i] = (src[i] >> 4) & 0x0f0f0f0f;
|
|
dst2[i] = src[i] & 0x0f0f0f0f;
|
|
}
|
|
}
|
|
|
|
template <int wg_wait=0, bool arrive=true,
|
|
bool commit=true, typename Tensor0, typename Tensor1,
|
|
typename Tensor2, typename Tensor3, typename TiledMma,
|
|
typename ThrCopyA, typename TiledCopyA>
|
|
__forceinline__ __device__ void gemm(
|
|
TiledMma &tiled_mma,
|
|
Tensor0 &tCrA,
|
|
Tensor1 &tCsA,
|
|
Tensor2 const &tCrB,
|
|
Tensor3 &tCrC,
|
|
TiledCopyA const &tiled_copy_A,
|
|
ThrCopyA const &thr_copy_A) {
|
|
constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
|
|
Tensor tCrA1 = make_tensor<cutlass::float_e4m3_t>(tCrA.layout());
|
|
Tensor tCrA2 = make_tensor<cutlass::float_e4m3_t>(tCrA.layout());
|
|
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
|
warpgroup_fence_operand(tCrC);
|
|
if constexpr (arrive) {
|
|
warpgroup_arrive();
|
|
}
|
|
constexpr int numel = decltype(size(tCrA(_, _, 0)))::value / 4;
|
|
|
|
Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
|
|
cute::copy(tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{}));
|
|
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
|
if (k_block < size<2>(tCrA) - 1) {
|
|
cute::copy(tiled_copy_A, tCsA(_, _, k_block + 1), tCrA_copy_view(_, _, k_block + 1));
|
|
}
|
|
int32_t * tCrA_data = reinterpret_cast<int32_t *>(tCrA(_,_,k_block).data());
|
|
int32_t * tCrA1_data = reinterpret_cast<int32_t *>(tCrA1(_,_,k_block).data());
|
|
int32_t * tCrA2_data = reinterpret_cast<int32_t *>(tCrA2(_,_,k_block).data());
|
|
convert_c4_2_fp8<numel>(tCrA_data, tCrA1_data, tCrA2_data);
|
|
|
|
cute::gemm(tiled_mma, tCrA1(_,_,k_block), tCrB(_,_,2 * k_block), tCrC);
|
|
cute::gemm(tiled_mma, tCrA2(_,_,k_block), tCrB(_,_, 2 * k_block + 1), tCrC);
|
|
}
|
|
if constexpr (commit) {
|
|
warpgroup_commit_batch();
|
|
}
|
|
if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
|
|
warpgroup_fence_operand(tCrC);
|
|
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
|
} |