mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 d74e1209ae
			
		
	
	d74e1209ae
	
	
	
		
			
			* Update Inpaint pipeline * Update concat * Add GaussianRandomKernel * Update GaussianRandom * Add vae endoder * Add unet infer * Add vae decoder predict * add PrepareMaskAndMaskedImage * Add imwrite * Add time counter * Fix pipeline * use FDTensor move * Fix scaled_linear dpm solver * Add RGB2BGR
		
			
				
	
	
		
			111 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/function/tile.h"
 | |
| #include "fastdeploy/function/eigen.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| 
 | |
| template <typename T, int Rank>
 | |
| void TileFunctor(const FDTensor& x,
 | |
|                  const std::vector<int64_t>& origin_repeat_times,
 | |
|                  FDTensor* out) {
 | |
|   auto x_shape = x.Shape();
 | |
|   auto repeat_times = origin_repeat_times;
 | |
|   for (size_t i = 0; i < repeat_times.size(); ++i) {
 | |
|     FDASSERT(repeat_times[i] > 0,
 | |
|              "All elements of the input 'repeat_times' "
 | |
|              "for tile op must be positive integers, but "
 | |
|              "the value received is %d.",
 | |
|              repeat_times[i]);
 | |
|   }
 | |
|   if (repeat_times.size() < x_shape.size()) {
 | |
|     int diff = x_shape.size() - repeat_times.size();
 | |
|     repeat_times.insert(repeat_times.begin(), diff, 1);
 | |
|   } else {
 | |
|     int diff = repeat_times.size() - x_shape.size();
 | |
|     x_shape.insert(x_shape.begin(), diff, 1);
 | |
|   }
 | |
|   FDASSERT(repeat_times.size() == x_shape.size(),
 | |
|            "The rank (%d) of the input 'x' and the rank (%d) of the input "
 | |
|            "'repeat_times' for tile op must match after promotion.",
 | |
|            x_shape.size(), repeat_times.size());
 | |
| 
 | |
|   if (Rank == 0) {
 | |
|     // Deep copy
 | |
|     *out = x;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FDTensor out_tmp;
 | |
|   Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
 | |
|   for (size_t i = 0; i < repeat_times.size(); ++i) {
 | |
|     bcast_dims[i] = repeat_times[i];
 | |
|   }
 | |
| 
 | |
|   std::vector<int64_t> out_shape(x_shape);
 | |
|   for (size_t i = 0; i < repeat_times.size(); ++i) {
 | |
|     out_shape[i] *= repeat_times[i];
 | |
|   }
 | |
| 
 | |
|   out_tmp.Allocate(out_shape, x.Dtype());
 | |
|   auto eigen_x = EigenTensor<T, Rank>::From(x, x_shape);
 | |
|   auto eigen_out = EigenTensor<T, Rank>::From(out_tmp, out_shape);
 | |
| 
 | |
|   const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
 | |
|   eigen_out.device(dev) = eigen_x.broadcast(bcast_dims);
 | |
| 
 | |
|   *out = std::move(out_tmp);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void TileKernel(const FDTensor& x, const std::vector<int64_t>& repeat_times,
 | |
|                 FDTensor* out) {
 | |
|   auto rank = x.Shape().size();
 | |
|   auto repeat_times_size = repeat_times.size();
 | |
|   rank = (std::max)(rank, repeat_times_size);
 | |
|   switch (rank) {
 | |
|   case 0:
 | |
|     *out = x;
 | |
|     break;
 | |
|   case 1:
 | |
|     TileFunctor<T, 1>(x, repeat_times, out);
 | |
|     break;
 | |
|   case 2:
 | |
|     TileFunctor<T, 2>(x, repeat_times, out);
 | |
|     break;
 | |
|   case 3:
 | |
|     TileFunctor<T, 3>(x, repeat_times, out);
 | |
|     break;
 | |
|   case 4:
 | |
|     TileFunctor<T, 4>(x, repeat_times, out);
 | |
|     break;
 | |
|   case 5:
 | |
|     TileFunctor<T, 5>(x, repeat_times, out);
 | |
|     break;
 | |
|   case 6:
 | |
|     TileFunctor<T, 6>(x, repeat_times, out);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Tile(const FDTensor& x, const std::vector<int64_t>& repeat_times,
 | |
|           FDTensor* out) {
 | |
|   FD_VISIT_ALL_TYPES(x.dtype, "TileKernel",
 | |
|                      ([&] { TileKernel<data_t>(x, repeat_times, out); }));
 | |
| }
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 |