mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
625 lines
21 KiB
Plaintext
625 lines
21 KiB
Plaintext
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "helper.h" // NOLINT
|
|
|
|
#define WARP_SIZE 32
|
|
|
|
template <typename T>
|
|
__forceinline__ __device__ T
|
|
CudaShuffleDownSync(unsigned mask, T val, int delta, int width = warpSize) {
|
|
return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
|
|
}
|
|
|
|
template <>
|
|
__forceinline__ __device__ phi::dtype::float16 CudaShuffleDownSync(
|
|
unsigned mask, phi::dtype::float16 val, int delta, int width) {
|
|
return paddle::float16(__shfl_down_sync(
|
|
mask, val.to_half(), static_cast<unsigned>(delta), width));
|
|
}
|
|
|
|
template <>
|
|
__forceinline__ __device__ phi::dtype::bfloat16 CudaShuffleDownSync(
|
|
unsigned mask, phi::dtype::bfloat16 val, int delta, int width) {
|
|
return paddle::bfloat16(__shfl_down_sync(
|
|
mask, val.to_nv_bfloat16(), static_cast<unsigned>(delta), width));
|
|
}
|
|
|
|
struct BlockPrefixCallbackOp {
|
|
// Running prefix
|
|
float running_total;
|
|
// Constructor
|
|
__device__ BlockPrefixCallbackOp(float running_total)
|
|
: running_total(running_total) {}
|
|
// Callback operator to be entered by the first warp of threads in the
|
|
// block. Thread-0 is responsible for returning a value for seeding the
|
|
// block-wide scan.
|
|
__device__ float operator()(float block_aggregate) {
|
|
float old_prefix = running_total;
|
|
running_total += block_aggregate;
|
|
return old_prefix;
|
|
}
|
|
};
|
|
|
|
#define FINAL_MASK 0xFFFFFFFF
|
|
|
|
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
|
|
case (dim): { \
|
|
constexpr auto kBlockDim = (dim); \
|
|
__VA_ARGS__; \
|
|
} break
|
|
|
|
#define FIXED_BLOCK_DIM(...) \
|
|
FIXED_BLOCK_DIM_BASE(1024, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(512, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
|
|
|
|
#define FIXED_TOPK_BASE(topk, ...) \
|
|
case (topk): { \
|
|
constexpr auto kTopK = topk; \
|
|
__VA_ARGS__; \
|
|
} break
|
|
|
|
#define FIXED_TOPK(...) \
|
|
FIXED_TOPK_BASE(2, ##__VA_ARGS__); \
|
|
FIXED_TOPK_BASE(3, ##__VA_ARGS__); \
|
|
FIXED_TOPK_BASE(4, ##__VA_ARGS__); \
|
|
FIXED_TOPK_BASE(5, ##__VA_ARGS__); \
|
|
FIXED_TOPK_BASE(8, ##__VA_ARGS__); \
|
|
FIXED_TOPK_BASE(10, ##__VA_ARGS__)
|
|
|
|
struct SegmentOffsetIter {
|
|
explicit SegmentOffsetIter(int num_cols) : num_cols_(num_cols) {}
|
|
|
|
__host__ __device__ __forceinline__ int operator()(int idx) const {
|
|
return idx * num_cols_;
|
|
}
|
|
|
|
int num_cols_;
|
|
};
|
|
|
|
inline int div_up(int a, int n) { return (a + n - 1) / n; }
|
|
|
|
template <typename T>
|
|
__global__ void FillIndex(T* indices, T num_rows, T num_cols) {
|
|
int col_id = threadIdx.x;
|
|
int row_id = blockIdx.x;
|
|
|
|
for (T j = row_id; j < num_rows; j += gridDim.x) {
|
|
for (T i = col_id; i < num_cols; i += blockDim.x) {
|
|
indices[j * num_cols + i] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void SetCountIter(int* count_iter, int num) {
|
|
int tid = threadIdx.x;
|
|
int bid = blockIdx.x;
|
|
int idx = bid * blockDim.x + tid;
|
|
for (int i = idx; i < num; i += gridDim.x * blockDim.x) {
|
|
count_iter[i] = i;
|
|
}
|
|
}
|
|
|
|
template <typename T, int BLOCK_SIZE>
|
|
__global__ void top_p_candidates_kernel(T* sorted_probs,
|
|
int64_t* sorted_id,
|
|
T* out_val,
|
|
int64_t* out_id,
|
|
int* actual_candidates_lens,
|
|
const int vocab_size,
|
|
const float topp,
|
|
const int candidates_len) {
|
|
__shared__ int stop_shared;
|
|
__shared__ float rand_p;
|
|
const int tid = threadIdx.x;
|
|
const int bid = blockIdx.x;
|
|
constexpr int NUM_WARPS = BLOCK_SIZE / 32;
|
|
const int lane_id = tid % 32;
|
|
const int warp_id = tid / 32;
|
|
|
|
typedef cub::BlockScan<float, BLOCK_SIZE> BlockScan;
|
|
typedef cub::BlockReduce<int, BLOCK_SIZE> BlockReduce;
|
|
__shared__ typename BlockScan::TempStorage temp_storage;
|
|
__shared__ typename BlockReduce::TempStorage temp_storage_reduce;
|
|
__shared__ uint32_t selected_shared[NUM_WARPS];
|
|
|
|
if (lane_id == 0) {
|
|
selected_shared[warp_id] = 0;
|
|
}
|
|
|
|
// Initialize running total
|
|
BlockPrefixCallbackOp prefix_op(0);
|
|
|
|
__syncthreads();
|
|
|
|
int offset = bid * vocab_size;
|
|
int end = ((vocab_size + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
|
|
int i_activate = 0;
|
|
float thread_offset = 0;
|
|
for (int i = tid; i < end; i += BLOCK_SIZE) {
|
|
float thread_count = (i < vocab_size)
|
|
? static_cast<float>(sorted_probs[offset + i])
|
|
: 0.f;
|
|
|
|
BlockScan(temp_storage)
|
|
.InclusiveSum(thread_count, thread_offset, prefix_op);
|
|
|
|
if (i < candidates_len) {
|
|
out_id[bid * candidates_len + i] = sorted_id[offset + i];
|
|
out_val[bid * candidates_len + i] = sorted_probs[offset + i];
|
|
}
|
|
|
|
uint32_t activate_mask =
|
|
__ballot_sync(FINAL_MASK, topp <= thread_offset);
|
|
i_activate = i;
|
|
if (activate_mask != 0 || i >= candidates_len) {
|
|
if (lane_id == 0) {
|
|
atomicAdd(&stop_shared, 1);
|
|
selected_shared[warp_id] = activate_mask;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
if (stop_shared > 0) {
|
|
break;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
bool skip = (selected_shared[warp_id] > 0) ? false : true;
|
|
for (int i = 0; i < warp_id; i++) {
|
|
if (selected_shared[i] != 0) {
|
|
// If the previous has stopped, skip the current warp
|
|
skip = true;
|
|
}
|
|
}
|
|
if (!skip) {
|
|
int active_lane_id =
|
|
WARP_SIZE - __popc(selected_shared[warp_id]); // first not 0
|
|
if (lane_id == active_lane_id) {
|
|
actual_candidates_lens[bid] = i_activate + 1;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
if (tid == 0) {
|
|
// printf("actual_candidates_lens[%d] %d\n", bid,
|
|
// actual_candidates_lens[bid]);
|
|
if (actual_candidates_lens[bid] == 0) {
|
|
actual_candidates_lens[bid] = candidates_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
struct Pair {
|
|
__device__ __forceinline__ Pair() {}
|
|
__device__ __forceinline__ Pair(T value, int id) : v(value), id(id) {}
|
|
|
|
__device__ __forceinline__ void set(T value, int id) {
|
|
this->v = value;
|
|
this->id = id;
|
|
}
|
|
|
|
__device__ __forceinline__ void operator=(const Pair<T>& in) {
|
|
v = in.v;
|
|
id = in.id;
|
|
}
|
|
|
|
__device__ __forceinline__ bool operator<(const T value) const {
|
|
return (static_cast<float>(v) < static_cast<float>(value));
|
|
}
|
|
|
|
__device__ __forceinline__ bool operator>(const T value) const {
|
|
return (static_cast<float>(v) > static_cast<float>(value));
|
|
}
|
|
__device__ __forceinline__ bool operator<(const Pair<T>& in) const {
|
|
return (static_cast<float>(v) < static_cast<float>(in.v)) ||
|
|
((static_cast<float>(v) == static_cast<float>(in.v)) &&
|
|
(id > in.id));
|
|
}
|
|
|
|
__device__ __forceinline__ bool operator>(const Pair<T>& in) const {
|
|
return (static_cast<float>(v) > static_cast<float>(in.v)) ||
|
|
((static_cast<float>(v) == static_cast<float>(in.v)) &&
|
|
(id < in.id));
|
|
}
|
|
|
|
T v;
|
|
int id;
|
|
};
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ void AddTo(Pair<T> topk[],
|
|
const Pair<T>& p,
|
|
int beam_size) {
|
|
for (int k = beam_size - 2; k >= 0; k--) {
|
|
if (topk[k] < p) {
|
|
topk[k + 1] = topk[k];
|
|
} else {
|
|
topk[k + 1] = p;
|
|
return;
|
|
}
|
|
}
|
|
topk[0] = p;
|
|
}
|
|
|
|
template <typename T, int BlockSize>
|
|
__device__ __forceinline__ void GetTopK(
|
|
Pair<T> topk[], const T* src, int idx, int dim, int beam_size) {
|
|
while (idx < dim) {
|
|
if (topk[beam_size - 1] < src[idx]) {
|
|
Pair<T> tmp(src[idx], idx);
|
|
AddTo<T>(topk, tmp, beam_size);
|
|
}
|
|
idx += BlockSize;
|
|
}
|
|
}
|
|
|
|
template <typename T, int BlockSize>
|
|
__device__ __forceinline__ void GetTopK(Pair<T> topk[],
|
|
const T* src,
|
|
int idx,
|
|
int dim,
|
|
const Pair<T>& max,
|
|
int beam_size) {
|
|
while (idx < dim) {
|
|
if (topk[beam_size - 1] < src[idx]) {
|
|
Pair<T> tmp(src[idx], idx);
|
|
if (tmp < max) {
|
|
AddTo<T>(topk, tmp, beam_size);
|
|
}
|
|
}
|
|
idx += BlockSize;
|
|
}
|
|
}
|
|
|
|
template <typename T, int MaxLength, int BlockSize>
|
|
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[],
|
|
int* beam,
|
|
int beam_size,
|
|
const T* src,
|
|
bool* firstStep,
|
|
bool* is_empty,
|
|
Pair<T>* max,
|
|
int dim,
|
|
const int tid) {
|
|
if (*beam > 0) {
|
|
int length = (*beam) < beam_size ? *beam : beam_size;
|
|
if (*firstStep) {
|
|
*firstStep = false;
|
|
GetTopK<T, BlockSize>(topk, src, tid, dim, length);
|
|
} else {
|
|
for (int k = 0; k < MaxLength; k++) {
|
|
if (k < MaxLength - (*beam)) {
|
|
topk[k] = topk[k + *beam];
|
|
} else {
|
|
topk[k].set(std::numeric_limits<T>::min(), -1);
|
|
}
|
|
}
|
|
if (!(*is_empty)) {
|
|
GetTopK<T, BlockSize>(
|
|
topk + MaxLength - *beam, src, tid, dim, *max, length);
|
|
}
|
|
}
|
|
|
|
*max = topk[MaxLength - 1];
|
|
if ((*max).id == -1) *is_empty = true;
|
|
*beam = 0;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__forceinline__ __device__ Pair<T> WarpReduce(Pair<T> input) {
|
|
#pragma unroll
|
|
for (int offset = 16; offset > 0; offset >>= 1) {
|
|
T tmp_val = CudaShuffleDownSync(FINAL_MASK, input.v, offset);
|
|
int tmp_id = CudaShuffleDownSync(FINAL_MASK, input.id, offset);
|
|
if (static_cast<float>(input.v) < static_cast<float>(tmp_val)) {
|
|
input.v = tmp_val;
|
|
input.id = tmp_id;
|
|
}
|
|
}
|
|
return input;
|
|
}
|
|
|
|
template <typename T, int MaxLength, int BlockSize>
|
|
__device__ __forceinline__ void BlockReduce(Pair<T> shared_max[],
|
|
Pair<T> topk[],
|
|
Pair<T> beam_max[],
|
|
int* beam,
|
|
int* k,
|
|
int* count,
|
|
const int tid,
|
|
const int wid,
|
|
const int lane) {
|
|
while (true) {
|
|
__syncthreads();
|
|
Pair<T> input_now = topk[0];
|
|
input_now = WarpReduce(input_now);
|
|
|
|
if (lane == 0) {
|
|
shared_max[wid] = input_now;
|
|
}
|
|
__syncthreads();
|
|
input_now = (tid < BlockSize / 32)
|
|
? shared_max[lane]
|
|
: Pair<T>(std::numeric_limits<T>::min(), -1);
|
|
if (wid == 0) {
|
|
input_now = WarpReduce(input_now);
|
|
if (lane == 0) shared_max[0] = input_now;
|
|
}
|
|
__syncthreads();
|
|
if (tid == 0) {
|
|
beam_max[*count] = shared_max[0];
|
|
(*count)++;
|
|
}
|
|
int tid_max = shared_max[0].id % BlockSize;
|
|
if (tid == tid_max) {
|
|
(*beam)++;
|
|
}
|
|
if (--(*k) == 0) break;
|
|
__syncthreads();
|
|
|
|
if (tid == tid_max) {
|
|
if (*beam < MaxLength) {
|
|
topk[0] = topk[*beam];
|
|
}
|
|
}
|
|
|
|
if (MaxLength < 5) {
|
|
if (*beam >= MaxLength) break;
|
|
} else {
|
|
unsigned mask = 0u;
|
|
mask = __ballot_sync(FINAL_MASK, true);
|
|
if (tid_max / 32 == wid) {
|
|
if (__shfl_down_sync(FINAL_MASK, *beam, tid_max % 32, 32) ==
|
|
MaxLength)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, int MaxLength, int TopPBeamTopK, int BlockSize>
|
|
__global__ void KeMatrixTopPBeamTopKFt(
|
|
const T* src,
|
|
const T* top_ps,
|
|
const int* output_padding_offset,
|
|
int64_t* out_id, // [max_cadidate_len, 1]
|
|
T* out_val, // [max_cadidate_len, 1]
|
|
int* actual_candidates_lens,
|
|
int vocab_size,
|
|
const int max_cadidate_len,
|
|
const int max_seq_len) {
|
|
const int tid = threadIdx.x;
|
|
const int wid = tid / 32;
|
|
const int lane = tid % 32;
|
|
const int token_id = blockIdx.x;
|
|
const int ori_token_id = token_id + output_padding_offset[token_id];
|
|
const int bid = ori_token_id / max_seq_len;
|
|
|
|
int top_num = TopPBeamTopK;
|
|
float top_p_value = static_cast<float>(top_ps[bid]);
|
|
|
|
__shared__ Pair<T> shared_max[BlockSize / 32];
|
|
__shared__ Pair<T> beam_max[TopPBeamTopK];
|
|
|
|
Pair<T> topk[MaxLength];
|
|
int beam = MaxLength;
|
|
Pair<T> max;
|
|
bool is_empty = false;
|
|
bool firststep = true;
|
|
__shared__ int count;
|
|
|
|
if (tid == 0) {
|
|
count = 0;
|
|
}
|
|
|
|
for (int j = 0; j < MaxLength; j++) {
|
|
topk[j].set(std::numeric_limits<T>::min(), -1);
|
|
}
|
|
|
|
while (top_num) {
|
|
ThreadGetTopK<T, MaxLength, BlockSize>(topk,
|
|
&beam,
|
|
TopPBeamTopK,
|
|
src + token_id * vocab_size,
|
|
&firststep,
|
|
&is_empty,
|
|
&max,
|
|
vocab_size,
|
|
tid);
|
|
BlockReduce<T, MaxLength, BlockSize>(shared_max,
|
|
topk,
|
|
beam_max,
|
|
&beam,
|
|
&top_num,
|
|
&count,
|
|
tid,
|
|
wid,
|
|
lane);
|
|
}
|
|
if (tid == 0) {
|
|
float sum_prob = 0.0f;
|
|
bool flag = false;
|
|
for (int i = 0; i < TopPBeamTopK; i++) {
|
|
out_id[token_id * max_cadidate_len + i] =
|
|
static_cast<int64_t>(beam_max[i].id);
|
|
out_val[token_id * max_cadidate_len + i] = beam_max[i].v;
|
|
float val = static_cast<float>(beam_max[i].v);
|
|
sum_prob += val;
|
|
|
|
if (sum_prob >= top_p_value) {
|
|
actual_candidates_lens[token_id] = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, int TopKMaxLength>
|
|
void DispatchTopK(const T* src,
|
|
const T* top_ps,
|
|
const int* output_padding_offset,
|
|
int64_t* out_id, // topk id
|
|
T* out_val, // topk val
|
|
int* actual_candidates_lens_data,
|
|
const int vocab_size,
|
|
const int token_num,
|
|
const int cadidate_len,
|
|
const int max_seq_len,
|
|
const cudaStream_t& stream) {
|
|
int BlockSize = GetBlockSize(vocab_size);
|
|
switch (cadidate_len) {
|
|
FIXED_TOPK(switch (BlockSize) {
|
|
FIXED_BLOCK_DIM(
|
|
KeMatrixTopPBeamTopKFt<T, TopKMaxLength, kTopK, kBlockDim>
|
|
<<<token_num, kBlockDim, 0, stream>>>(
|
|
src,
|
|
top_ps,
|
|
output_padding_offset,
|
|
out_id,
|
|
out_val,
|
|
actual_candidates_lens_data,
|
|
vocab_size,
|
|
cadidate_len,
|
|
max_seq_len));
|
|
default:
|
|
PD_THROW(
|
|
"the input data shape has error in the topp_beam_topk "
|
|
"kernel.");
|
|
});
|
|
default:
|
|
PD_THROW("the input topk is not implemented.");
|
|
}
|
|
}
|
|
|
|
template <paddle::DataType D>
|
|
std::vector<paddle::Tensor> LaunchTopPCandidates(
|
|
const paddle::Tensor& probs, // [token_num, vocab_size]
|
|
const paddle::Tensor& top_p, // [token_num]
|
|
const paddle::Tensor& output_padding_offset,
|
|
const int candidates_len,
|
|
const int max_seq_len) {
|
|
typedef PDTraits<D> traits_;
|
|
typedef typename traits_::DataType DataType_;
|
|
typedef typename traits_::data_t data_t;
|
|
|
|
std::vector<int64_t> input_shape = probs.shape();
|
|
const int token_num = input_shape[0];
|
|
const int vocab_size = input_shape[1];
|
|
|
|
auto verify_scores =
|
|
paddle::full({token_num, candidates_len}, 0, D, probs.place());
|
|
auto verify_tokens = paddle::full(
|
|
{token_num, candidates_len}, 0, paddle::DataType::INT64, probs.place());
|
|
auto actual_candidate_lens =
|
|
paddle::full({token_num}, 0, paddle::DataType::INT32, probs.place());
|
|
|
|
auto stream = probs.stream();
|
|
|
|
constexpr int TopKMaxLength = 2;
|
|
DispatchTopK<DataType_, TopKMaxLength>(
|
|
reinterpret_cast<const DataType_*>(probs.data<data_t>()),
|
|
reinterpret_cast<const DataType_*>(top_p.data<data_t>()),
|
|
output_padding_offset.data<int>(),
|
|
verify_tokens.data<int64_t>(),
|
|
reinterpret_cast<DataType_*>(verify_scores.data<data_t>()),
|
|
actual_candidate_lens.data<int>(),
|
|
vocab_size,
|
|
token_num,
|
|
candidates_len,
|
|
max_seq_len,
|
|
stream);
|
|
|
|
return {verify_scores, verify_tokens, actual_candidate_lens};
|
|
}
|
|
|
|
std::vector<paddle::Tensor> DispatchTopPCandidatesWithDtype(
|
|
const paddle::Tensor& probs,
|
|
const paddle::Tensor& top_p,
|
|
const paddle::Tensor& output_padding_offset,
|
|
int candidates_len,
|
|
int max_seq_len) {
|
|
switch (probs.type()) {
|
|
case paddle::DataType::BFLOAT16:
|
|
return LaunchTopPCandidates<paddle::DataType::BFLOAT16>(
|
|
probs,
|
|
top_p,
|
|
output_padding_offset,
|
|
candidates_len,
|
|
max_seq_len);
|
|
break;
|
|
case paddle::DataType::FLOAT16:
|
|
return LaunchTopPCandidates<paddle::DataType::FLOAT16>(
|
|
probs,
|
|
top_p,
|
|
output_padding_offset,
|
|
candidates_len,
|
|
max_seq_len);
|
|
break;
|
|
case paddle::DataType::FLOAT32:
|
|
return LaunchTopPCandidates<paddle::DataType::FLOAT32>(
|
|
probs,
|
|
top_p,
|
|
output_padding_offset,
|
|
candidates_len,
|
|
max_seq_len);
|
|
break;
|
|
default:
|
|
PD_THROW(
|
|
"NOT supported data type. "
|
|
"Only bfloat16, float16 and float32 are supported. ");
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::vector<paddle::Tensor> TopPCandidates(
|
|
const paddle::Tensor& probs,
|
|
const paddle::Tensor& top_p,
|
|
const paddle::Tensor& output_padding_offset,
|
|
int candidates_len,
|
|
int max_seq_len) {
|
|
return DispatchTopPCandidatesWithDtype(
|
|
probs, top_p, output_padding_offset, candidates_len, max_seq_len);
|
|
}
|
|
|
|
std::vector<std::vector<int64_t>> TopPCandidatesInferShape(
|
|
const std::vector<int64_t>& probs_shape,
|
|
const std::vector<int64_t>& top_p_shape,
|
|
const std::vector<int64_t>& output_padding_offset_shape,
|
|
int max_candidates_len) {
|
|
int token_num = probs_shape[0];
|
|
return {{token_num, max_candidates_len},
|
|
{token_num, max_candidates_len},
|
|
{token_num}};
|
|
}
|
|
|
|
std::vector<paddle::DataType> TopPCandidatesInferDtype(
|
|
const paddle::DataType& probs_dtype,
|
|
const paddle::DataType& top_p_dtype,
|
|
const paddle::DataType& output_padding_offset_dtype) {
|
|
return {probs_dtype, paddle::DataType::INT64, paddle::DataType::INT32};
|
|
}
|
|
|
|
PD_BUILD_STATIC_OP(top_p_candidates)
|
|
.Inputs({"probs", "top_p", "output_padding_offset"})
|
|
.Outputs({"verify_scores", "verify_tokens", "actual_candidate_lens"})
|
|
.Attrs({"candidates_len: int", "max_seq_len: int"})
|
|
.SetKernelFn(PD_KERNEL(TopPCandidates))
|
|
.SetInferShapeFn(PD_INFER_SHAPE(TopPCandidatesInferShape))
|
|
.SetInferDtypeFn(PD_INFER_DTYPE(TopPCandidatesInferDtype));
|