mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/ocr/ppocr/classifier.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace ocr {
 | |
| 
 | |
| Classifier::Classifier() {}
 | |
| Classifier::Classifier(const std::string& model_file,
 | |
|                        const std::string& params_file,
 | |
|                        const RuntimeOption& custom_option,
 | |
|                        const ModelFormat& model_format) {
 | |
|   if (model_format == ModelFormat::ONNX) {
 | |
|     valid_cpu_backends = {Backend::ORT,
 | |
|                           Backend::OPENVINO}; 
 | |
|     valid_gpu_backends = {Backend::ORT, Backend::TRT};  
 | |
|   } else {
 | |
|     valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO};
 | |
|     valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|   }
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
| 
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| // Init
 | |
| bool Classifier::Initialize() {
 | |
|   // pre&post process parameters
 | |
|   cls_thresh = 0.9;
 | |
|   cls_image_shape = {3, 48, 192};
 | |
|   cls_batch_num = 1;
 | |
|   mean = {0.5f, 0.5f, 0.5f};
 | |
|   scale = {0.5f, 0.5f, 0.5f};
 | |
|   is_scale = true;
 | |
| 
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void OcrClassifierResizeImage(Mat* mat,
 | |
|                               const std::vector<int>& rec_image_shape) {
 | |
|   int imgC = rec_image_shape[0];
 | |
|   int imgH = rec_image_shape[1];
 | |
|   int imgW = rec_image_shape[2];
 | |
| 
 | |
|   float ratio = float(mat->Width()) / float(mat->Height());
 | |
| 
 | |
|   int resize_w;
 | |
|   if (ceilf(imgH * ratio) > imgW)
 | |
|     resize_w = imgW;
 | |
|   else
 | |
|     resize_w = int(ceilf(imgH * ratio));
 | |
| 
 | |
|   Resize::Run(mat, resize_w, imgH);
 | |
| 
 | |
|   std::vector<float> value = {0, 0, 0};
 | |
|   if (resize_w < imgW) {
 | |
|     Pad::Run(mat, 0, 0, 0, imgW - resize_w, value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Classifier::Preprocess(Mat* mat, FDTensor* output) {
 | |
|   // 1. cls resizes
 | |
|   // 2. normalize
 | |
|   // 3. batch_permute
 | |
|   OcrClassifierResizeImage(mat, cls_image_shape);
 | |
| 
 | |
|   Normalize::Run(mat, mean, scale, true);
 | |
| 
 | |
|   HWC2CHW::Run(mat);
 | |
|   Cast::Run(mat, "float");
 | |
| 
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Classifier::Postprocess(FDTensor& infer_result,
 | |
|                              std::tuple<int, float>* cls_result) {
 | |
|   std::vector<int64_t> output_shape = infer_result.shape;
 | |
|   FDASSERT(output_shape[0] == 1, "Only support batch =1 now.");
 | |
| 
 | |
|   float* out_data = static_cast<float*>(infer_result.Data());
 | |
| 
 | |
|   int label = std::distance(
 | |
|       &out_data[0], std::max_element(&out_data[0], &out_data[output_shape[1]]));
 | |
| 
 | |
|   float score =
 | |
|       float(*std::max_element(&out_data[0], &out_data[output_shape[1]]));
 | |
| 
 | |
|   std::get<0>(*cls_result) = label;
 | |
|   std::get<1>(*cls_result) = score;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Classifier::Predict(cv::Mat* img, std::tuple<int, float>* cls_result) {
 | |
|   Mat mat(*img);
 | |
|   std::vector<FDTensor> input_tensors(1);
 | |
| 
 | |
|   if (!Preprocess(&mat, &input_tensors[0])) {
 | |
|     FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   input_tensors[0].name = InputInfoOfRuntime(0).name;
 | |
|   std::vector<FDTensor> output_tensors;
 | |
|   if (!Infer(input_tensors, &output_tensors)) {
 | |
|     FDERROR << "Failed to inference." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Postprocess(output_tensors[0], cls_result)) {
 | |
|     FDERROR << "Failed to post process." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namesapce ocr
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
