mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			62 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/common/processors/convert.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| namespace vision {
 | |
| 
 | |
| Convert::Convert(const std::vector<float>& alpha,
 | |
|                  const std::vector<float>& beta) {
 | |
|   FDASSERT(alpha.size() == beta.size(),
 | |
|            "Convert: requires the size of alpha equal to the size of beta.");
 | |
|   FDASSERT(alpha.size() != 0,
 | |
|            "Convert: requires the size of alpha and beta > 0.");
 | |
|   alpha_.assign(alpha.begin(), alpha.end());
 | |
|   beta_.assign(beta.begin(), beta.end());
 | |
| }
 | |
| 
 | |
| bool Convert::CpuRun(Mat* mat) {
 | |
|   cv::Mat* im = mat->GetCpuMat();
 | |
|   std::vector<cv::Mat> split_im;
 | |
|   cv::split(*im, split_im);
 | |
|   for (int c = 0; c < im->channels(); c++) {
 | |
|     split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
 | |
|   }
 | |
|   cv::merge(split_im, *im);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_OPENCV_CUDA
 | |
| bool Convert::GpuRun(Mat* mat) {
 | |
|   cv::cuda::GpuMat* im = mat->GetGpuMat();
 | |
|   std::vector<cv::cuda::GpuMat> split_im;
 | |
|   cv::cuda::split(*im, split_im);
 | |
|   for (int c = 0; c < im->channels(); c++) {
 | |
|     split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
 | |
|   }
 | |
|   cv::cuda::merge(split_im, *im);
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool Convert::Run(Mat* mat, const std::vector<float>& alpha,
 | |
|                   const std::vector<float>& beta, ProcLib lib) {
 | |
|   auto c = Convert(alpha, beta);
 | |
|   return c(mat, lib);
 | |
| }
 | |
| 
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
