Files
FastDeploy/fastdeploy/fastdeploy_runtime.cc
jiangjiajun 9d87046d78 first commit
2022-07-05 09:30:15 +00:00

164 lines
5.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/fastdeploy_runtime.h"
#include "fastdeploy/utils/utils.h"
#ifdef ENABLE_ORT_BACKEND
#include "fastdeploy/backends/ort/ort_backend.h"
#endif
#ifdef ENABLE_TRT_BACKEND
#include "fastdeploy/backends/tensorrt/trt_backend.h"
#endif
namespace fastdeploy {
std::vector<Backend> GetAvailableBackends() {
std::vector<Backend> backends;
#ifdef ENABLE_ORT_BACKEND
backends.push_back(Backend::ORT);
#endif
#ifdef ENABLE_TRT_BACKEND
backends.push_back(Backend::TRT);
#endif
return backends;
}
bool IsBackendAvailable(const Backend& backend) {
std::vector<Backend> backends = GetAvailableBackends();
for (size_t i = 0; i < backends.size(); ++i) {
if (backend == backends[i]) {
return true;
}
}
return false;
}
bool ModelFormatCheck(const std::string& model_file,
const Frontend& model_format) {
if (model_format == Frontend::PADDLE) {
if (model_file.size() < 8 ||
model_file.substr(model_file.size() - 8, 8) != ".pdmodel") {
FDLogger() << "With model format of Frontend::PADDLE, the model file "
"should ends with `.pdmodel`, but now it's "
<< model_file << std::endl;
return false;
}
} else if (model_format == Frontend::ONNX) {
if (model_file.size() < 5 ||
model_file.substr(model_file.size() - 5, 5) != ".onnx") {
FDLogger() << "With model format of Frontend::ONNX, the model file "
"should ends with `.onnx`, but now it's "
<< model_file << std::endl;
return false;
}
} else {
FDLogger() << "Only support model format with frontend Frontend::PADDLE / "
"Frontend::ONNX."
<< std::endl;
return false;
}
return true;
}
bool Runtime::Init(const RuntimeOption& _option) {
option = _option;
if (option.backend == Backend::ORT) {
CreateOrtBackend();
} else if (option.backend == Backend::TRT) {
CreateTrtBackend();
} else {
FDERROR << "Runtime only support Backend::ORT/Backend::TRT as backend now."
<< std::endl;
return false;
}
return true;
}
TensorInfo Runtime::GetInputInfo(int index) {
return backend_->GetInputInfo(index);
}
TensorInfo Runtime::GetOutputInfo(int index) {
return backend_->GetOutputInfo(index);
}
bool Runtime::Infer(std::vector<FDTensor>& input_tensors,
std::vector<FDTensor>* output_tensors) {
return backend_->Infer(input_tensors, output_tensors);
}
void Runtime::CreateOrtBackend() {
#ifdef ENABLE_ORT_BACKEND
auto ort_option = OrtBackendOption();
ort_option.graph_optimization_level = option.ort_graph_opt_level;
ort_option.intra_op_num_threads = option.cpu_thread_num;
ort_option.inter_op_num_threads = option.ort_inter_op_num_threads;
ort_option.execution_mode = option.ort_execution_mode;
ort_option.use_gpu = (option.device == Device::GPU) ? true : false;
ort_option.gpu_id = option.device_id;
FDASSERT(option.model_format == Frontend::PADDLE ||
option.model_format == Frontend::ONNX,
"OrtBackend only support model format of Frontend::PADDLE / "
"Frontend::ONNX.");
backend_ = new OrtBackend();
auto casted_backend = dynamic_cast<OrtBackend*>(backend_);
if (option.model_format == Frontend::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ort_option),
"Load model from ONNX failed while initliazing OrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, ort_option),
"Load model from Paddle failed while initliazing OrtBackend.");
}
#else
FDASSERT(false, "OrtBackend is not available, please compiled with "
"ENABLE_ORT_BACKEND=ON.");
#endif
}
void Runtime::CreateTrtBackend() {
#ifdef ENABLE_TRT_BACKEND
auto trt_option = TrtBackendOption();
trt_option.gpu_id = option.device_id;
trt_option.enable_fp16 = option.trt_enable_fp16;
trt_option.enable_int8 = option.trt_enable_int8;
trt_option.max_batch_size = option.trt_max_batch_size;
trt_option.max_workspace_size = option.trt_max_workspace_size;
trt_option.fixed_shape = option.trt_fixed_shape;
trt_option.max_shape = option.trt_max_shape;
trt_option.min_shape = option.trt_max_shape;
trt_option.opt_shape = option.trt_opt_shape;
trt_option.serialize_file = option.trt_serialize_file;
FDASSERT(option.model_format == Frontend::PADDLE ||
option.model_format == Frontend::ONNX,
"TrtBackend only support model format of Frontend::PADDLE / "
"Frontend::ONNX.");
backend_ = new TrtBackend();
auto casted_backend = dynamic_cast<TrtBackend*>(backend_);
if (option.model_format == Frontend::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, trt_option),
"Load model from ONNX failed while initliazing TrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, trt_option),
"Load model from Paddle failed while initliazing TrtBackend.");
}
#else
FDASSERT(false, "TrtBackend is not available, please compiled with "
"ENABLE_TRT_BACKEND=ON.");
#endif
}
} // namespace fastdeploy