mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
99 lines
3.4 KiB
C++
99 lines
3.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "fastdeploy/backends/backend.h"
|
|
|
|
#include "fastdeploy/backends/tensorrt/common/argsParser.h"
|
|
#include "fastdeploy/backends/tensorrt/common/buffers.h"
|
|
#include "fastdeploy/backends/tensorrt/common/common.h"
|
|
#include "fastdeploy/backends/tensorrt/common/logger.h"
|
|
#include "fastdeploy/backends/tensorrt/common/parserOnnxConfig.h"
|
|
#include "fastdeploy/backends/tensorrt/common/sampleUtils.h"
|
|
|
|
#include "NvInfer.h"
|
|
#include <cuda_runtime_api.h>
|
|
|
|
namespace fastdeploy {
|
|
using namespace samplesCommon;
|
|
|
|
struct TrtValueInfo {
|
|
std::string name;
|
|
std::vector<int> shape;
|
|
nvinfer1::DataType dtype;
|
|
};
|
|
|
|
struct TrtBackendOption {
|
|
int gpu_id = 0;
|
|
bool enable_fp16 = false;
|
|
bool enable_int8 = false;
|
|
size_t max_batch_size = 32;
|
|
size_t max_workspace_size = 1 << 30;
|
|
std::map<std::string, std::vector<int32_t>> fixed_shape;
|
|
std::map<std::string, std::vector<int32_t>> max_shape;
|
|
std::map<std::string, std::vector<int32_t>> min_shape;
|
|
std::map<std::string, std::vector<int32_t>> opt_shape;
|
|
std::string serialize_file = "";
|
|
};
|
|
|
|
std::vector<int> toVec(const nvinfer1::Dims& dim);
|
|
size_t TrtDataTypeSize(const nvinfer1::DataType& dtype);
|
|
FDDataType GetFDDataType(const nvinfer1::DataType& dtype);
|
|
|
|
class TrtBackend : public BaseBackend {
|
|
public:
|
|
TrtBackend() : engine_(nullptr), context_(nullptr) {}
|
|
void BuildOption(const TrtBackendOption& option);
|
|
|
|
bool InitFromPaddle(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const TrtBackendOption& option = TrtBackendOption(),
|
|
bool verbose = false);
|
|
bool InitFromOnnx(const std::string& model_file,
|
|
const TrtBackendOption& option = TrtBackendOption(),
|
|
bool from_memory_buffer = false);
|
|
bool InitFromTrt(const std::string& trt_engine_file);
|
|
|
|
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs);
|
|
|
|
int NumInputs() const { return inputs_desc_.size(); }
|
|
int NumOutputs() const { return outputs_desc_.size(); }
|
|
TensorInfo GetInputInfo(int index);
|
|
TensorInfo GetOutputInfo(int index);
|
|
|
|
private:
|
|
std::shared_ptr<nvinfer1::ICudaEngine> engine_;
|
|
std::shared_ptr<nvinfer1::IExecutionContext> context_;
|
|
cudaStream_t stream_{};
|
|
std::vector<void*> bindings_;
|
|
std::vector<TrtValueInfo> inputs_desc_;
|
|
std::vector<TrtValueInfo> outputs_desc_;
|
|
std::map<std::string, DeviceBuffer> inputs_buffer_;
|
|
std::map<std::string, DeviceBuffer> outputs_buffer_;
|
|
|
|
void GetInputOutputInfo();
|
|
void AllocateBufferInDynamicShape(const std::vector<FDTensor>& inputs,
|
|
std::vector<FDTensor>* outputs);
|
|
bool CreateTrtEngine(const std::string& onnx_model,
|
|
const TrtBackendOption& option);
|
|
};
|
|
|
|
} // namespace fastdeploy
|