Files
FastDeploy/fastdeploy/backends/tensorrt/common/sampleReporting.cpp
jiangjiajun 9d87046d78 first commit
2022-07-05 09:30:15 +00:00

481 lines
19 KiB
C++

/*
* Copyright (c) 1993-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <exception>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <utility>
#include "sampleInference.h"
#include "sampleOptions.h"
#include "sampleReporting.h"
using namespace nvinfer1;
namespace sample {
namespace {
//!
//! \brief Find percentile in an ascending sequence of timings
//! \note percentile must be in [0, 100]. Otherwise, an exception is thrown.
//!
template <typename T>
float findPercentile(float percentile,
std::vector<InferenceTime> const& timings,
T const& toFloat) {
int32_t const all = static_cast<int32_t>(timings.size());
int32_t const exclude = static_cast<int32_t>((1 - percentile / 100) * all);
if (timings.empty()) {
return std::numeric_limits<float>::infinity();
}
if (percentile < 0.0f || percentile > 100.0f) {
throw std::runtime_error("percentile is not in [0, 100]!");
}
return toFloat(timings[std::max(all - 1 - exclude, 0)]);
}
//!
//! \brief Find median in a sorted sequence of timings
//!
template <typename T>
float findMedian(std::vector<InferenceTime> const& timings, T const& toFloat) {
if (timings.empty()) {
return std::numeric_limits<float>::infinity();
}
int32_t const m = timings.size() / 2;
if (timings.size() % 2) {
return toFloat(timings[m]);
}
return (toFloat(timings[m - 1]) + toFloat(timings[m])) / 2;
}
//!
//! \brief Find coefficient of variance (which is std / mean) in a sorted
//! sequence of timings given the mean
//!
template <typename T>
float findCoeffOfVariance(std::vector<InferenceTime> const& timings,
T const& toFloat, float mean) {
if (timings.empty()) {
return 0;
}
if (mean == 0.F) {
return std::numeric_limits<float>::infinity();
}
auto const metricAccumulator = [toFloat, mean](float acc,
InferenceTime const& a) {
float const diff = toFloat(a) - mean;
return acc + diff * diff;
};
float const variance =
std::accumulate(timings.begin(), timings.end(), 0.F, metricAccumulator) /
timings.size();
return std::sqrt(variance) / mean * 100.F;
}
inline InferenceTime traceToTiming(const InferenceTrace& a) {
return InferenceTime((a.enqEnd - a.enqStart), (a.h2dEnd - a.h2dStart),
(a.computeEnd - a.computeStart), (a.d2hEnd - a.d2hStart),
(a.d2hEnd - a.h2dStart));
}
} // namespace
void printProlog(int32_t warmups, int32_t timings, float warmupMs,
float benchTimeMs, std::ostream& os) {
os << "Warmup completed " << warmups << " queries over " << warmupMs << " ms"
<< std::endl;
os << "Timing trace has " << timings << " queries over " << benchTimeMs / 1000
<< " s" << std::endl;
}
void printTiming(std::vector<InferenceTime> const& timings, int32_t runsPerAvg,
std::ostream& os) {
int32_t count = 0;
InferenceTime sum;
os << std::endl;
os << "=== Trace details ===" << std::endl;
os << "Trace averages of " << runsPerAvg << " runs:" << std::endl;
for (auto const& t : timings) {
sum += t;
if (++count == runsPerAvg) {
// clang-format off
os << "Average on " << runsPerAvg << " runs - GPU latency: " << sum.compute / runsPerAvg
<< " ms - Host latency: " << sum.latency() / runsPerAvg << " ms (end to end " << sum.e2e / runsPerAvg
<< " ms, enqueue " << sum.enq / runsPerAvg << " ms)" << std::endl;
// clang-format on
count = 0;
sum.enq = 0;
sum.h2d = 0;
sum.compute = 0;
sum.d2h = 0;
sum.e2e = 0;
}
}
}
void printMetricExplanations(std::ostream& os) {
os << std::endl;
os << "=== Explanations of the performance metrics ===" << std::endl;
os << "Total Host Walltime: the host walltime from when the first query "
"(after warmups) is enqueued to when the "
"last query is completed."
<< std::endl;
os << "GPU Compute Time: the GPU latency to execute the kernels for a query."
<< std::endl;
os << "Total GPU Compute Time: the summation of the GPU Compute Time of all "
"the queries. If this is significantly "
"shorter than Total Host Walltime, the GPU may be under-utilized "
"because of host-side overheads or data "
"transfers."
<< std::endl;
os << "Throughput: the observed throughput computed by dividing the number "
"of queries by the Total Host Walltime. "
"If this is significantly lower than the reciprocal of GPU Compute "
"Time, the GPU may be under-utilized "
"because of host-side overheads or data transfers."
<< std::endl;
os << "Enqueue Time: the host latency to enqueue a query. If this is longer "
"than GPU Compute Time, the GPU may be "
"under-utilized."
<< std::endl;
os << "H2D Latency: the latency for host-to-device data transfers for input "
"tensors of a single query."
<< std::endl;
os << "D2H Latency: the latency for device-to-host data transfers for output "
"tensors of a single query."
<< std::endl;
os << "Latency: the summation of H2D Latency, GPU Compute Time, and D2H "
"Latency. This is the latency to infer a "
"single query."
<< std::endl;
os << "End-to-End Host Latency: the duration from when the H2D of a query is "
"called to when the D2H of the same "
"query is completed, which includes the latency to wait for the "
"completion of the previous query. This is "
"the latency of a query if multiple queries are enqueued consecutively."
<< std::endl;
}
PerformanceResult
getPerformanceResult(std::vector<InferenceTime> const& timings,
std::function<float(InferenceTime const&)> metricGetter,
float percentile) {
auto const metricComparator = [metricGetter](InferenceTime const& a,
InferenceTime const& b) {
return metricGetter(a) < metricGetter(b);
};
auto const metricAccumulator = [metricGetter](float acc,
InferenceTime const& a) {
return acc + metricGetter(a);
};
std::vector<InferenceTime> newTimings = timings;
std::sort(newTimings.begin(), newTimings.end(), metricComparator);
PerformanceResult result;
result.min = metricGetter(newTimings.front());
result.max = metricGetter(newTimings.back());
result.mean = std::accumulate(newTimings.begin(), newTimings.end(), 0.0f,
metricAccumulator) /
newTimings.size();
result.median = findMedian(newTimings, metricGetter);
result.percentile = findPercentile(percentile, newTimings, metricGetter);
result.coeffVar = findCoeffOfVariance(newTimings, metricGetter, result.mean);
return result;
}
void printEpilog(std::vector<InferenceTime> const& timings, float walltimeMs,
float percentile, int32_t batchSize, std::ostream& osInfo,
std::ostream& osWarning, std::ostream& osVerbose) {
float const throughput = batchSize * timings.size() / walltimeMs * 1000;
auto const getLatency = [](InferenceTime const& t) { return t.latency(); };
auto const latencyResult =
getPerformanceResult(timings, getLatency, percentile);
auto const getEndToEnd = [](InferenceTime const& t) { return t.e2e; };
auto const e2eLatencyResult =
getPerformanceResult(timings, getEndToEnd, percentile);
auto const getEnqueue = [](InferenceTime const& t) { return t.enq; };
auto const enqueueResult =
getPerformanceResult(timings, getEnqueue, percentile);
auto const getH2d = [](InferenceTime const& t) { return t.h2d; };
auto const h2dResult = getPerformanceResult(timings, getH2d, percentile);
auto const getCompute = [](InferenceTime const& t) { return t.compute; };
auto const gpuComputeResult =
getPerformanceResult(timings, getCompute, percentile);
auto const getD2h = [](InferenceTime const& t) { return t.d2h; };
auto const d2hResult = getPerformanceResult(timings, getD2h, percentile);
auto const toPerfString = [percentile](const PerformanceResult& r) {
std::stringstream s;
s << "min = " << r.min << " ms, max = " << r.max << " ms, mean = " << r.mean
<< " ms, "
<< "median = " << r.median << " ms, percentile(" << percentile
<< "%) = " << r.percentile << " ms";
return s.str();
};
osInfo << std::endl;
osInfo << "=== Performance summary ===" << std::endl;
osInfo << "Throughput: " << throughput << " qps" << std::endl;
osInfo << "Latency: " << toPerfString(latencyResult) << std::endl;
osInfo << "End-to-End Host Latency: " << toPerfString(e2eLatencyResult)
<< std::endl;
osInfo << "Enqueue Time: " << toPerfString(enqueueResult) << std::endl;
osInfo << "H2D Latency: " << toPerfString(h2dResult) << std::endl;
osInfo << "GPU Compute Time: " << toPerfString(gpuComputeResult) << std::endl;
osInfo << "D2H Latency: " << toPerfString(d2hResult) << std::endl;
osInfo << "Total Host Walltime: " << walltimeMs / 1000 << " s" << std::endl;
osInfo << "Total GPU Compute Time: "
<< gpuComputeResult.mean * timings.size() / 1000 << " s" << std::endl;
// Report warnings if the throughput is bound by other factors than GPU
// Compute Time.
constexpr float kENQUEUE_BOUND_REPORTING_THRESHOLD{0.8F};
if (enqueueResult.median >
kENQUEUE_BOUND_REPORTING_THRESHOLD * gpuComputeResult.median) {
osWarning << "* Throughput may be bound by Enqueue Time rather than GPU "
"Compute and the GPU may be under-utilized."
<< std::endl;
osWarning << " If not already in use, --useCudaGraph (utilize CUDA graphs "
"where possible) may increase the "
"throughput."
<< std::endl;
}
if (h2dResult.median >= gpuComputeResult.median) {
osWarning << "* Throughput may be bound by host-to-device transfers for "
"the inputs rather than GPU Compute and "
"the GPU may be under-utilized."
<< std::endl;
osWarning << " Add --noDataTransfers flag to disable data transfers."
<< std::endl;
}
if (d2hResult.median >= gpuComputeResult.median) {
osWarning << "* Throughput may be bound by device-to-host transfers for "
"the outputs rather than GPU Compute "
"and the GPU may be under-utilized."
<< std::endl;
osWarning << " Add --noDataTransfers flag to disable data transfers."
<< std::endl;
}
// Report warnings if the GPU Compute Time is unstable.
constexpr float kUNSTABLE_PERF_REPORTING_THRESHOLD{1.0F};
if (gpuComputeResult.coeffVar > kUNSTABLE_PERF_REPORTING_THRESHOLD) {
osWarning
<< "* GPU compute time is unstable, with coefficient of variance = "
<< gpuComputeResult.coeffVar << "%." << std::endl;
osWarning << " If not already in use, locking GPU clock frequency or "
"adding --useSpinWait may improve the "
<< "stability." << std::endl;
}
// Explain what the metrics mean.
osInfo << "Explanations of the performance metrics are printed in the "
"verbose logs."
<< std::endl;
printMetricExplanations(osVerbose);
osInfo << std::endl;
}
void printPerformanceReport(std::vector<InferenceTrace> const& trace,
const ReportingOptions& reporting, float warmupMs,
int32_t batchSize, std::ostream& osInfo,
std::ostream& osWarning, std::ostream& osVerbose) {
auto const isNotWarmup = [&warmupMs](const InferenceTrace& a) {
return a.computeStart >= warmupMs;
};
auto const noWarmup = std::find_if(trace.begin(), trace.end(), isNotWarmup);
int32_t const warmups = noWarmup - trace.begin();
float const benchTime = trace.back().d2hEnd - noWarmup->h2dStart;
// when implicit batch used, batchSize = options.inference.batch, which is
// parsed through --batch
// when explicit batch used, batchSize = options.inference.batch = 0
// treat inference with explicit batch as a single query and report the
// throughput
batchSize = batchSize ? batchSize : 1;
printProlog(warmups * batchSize, (trace.size() - warmups) * batchSize,
warmupMs, benchTime, osInfo);
std::vector<InferenceTime> timings(trace.size() - warmups);
std::transform(noWarmup, trace.end(), timings.begin(), traceToTiming);
printTiming(timings, reporting.avgs, osInfo);
printEpilog(timings, benchTime, reporting.percentile, batchSize, osInfo,
osWarning, osVerbose);
if (!reporting.exportTimes.empty()) {
exportJSONTrace(trace, reporting.exportTimes);
}
}
//! Printed format:
//! [ value, ...]
//! value ::= { "start enq : time, "end enq" : time, "start h2d" : time, "end
//! h2d" : time, "start compute" : time,
//! "end compute" : time, "start d2h" : time, "end d2h" : time,
//! "h2d" : time, "compute" : time,
//! "d2h" : time, "latency" : time, "end to end" : time }
//!
void exportJSONTrace(std::vector<InferenceTrace> const& trace,
std::string const& fileName) {
std::ofstream os(fileName, std::ofstream::trunc);
os << "[" << std::endl;
char const* sep = " ";
for (auto const& t : trace) {
InferenceTime const it(traceToTiming(t));
os << sep << "{ ";
sep = ", ";
// clang-format off
os << "\"startEnqMs\" : " << t.enqStart << sep << "\"endEnqMs\" : " << t.enqEnd << sep
<< "\"startH2dMs\" : " << t.h2dStart << sep << "\"endH2dMs\" : " << t.h2dEnd << sep
<< "\"startComputeMs\" : " << t.computeStart << sep << "\"endComputeMs\" : " << t.computeEnd << sep
<< "\"startD2hMs\" : " << t.d2hStart << sep << "\"endD2hMs\" : " << t.d2hEnd << sep
<< "\"h2dMs\" : " << it.h2d << sep << "\"computeMs\" : " << it.compute << sep
<< "\"d2hMs\" : " << it.d2h << sep << "\"latencyMs\" : " << it.latency() << sep
<< "\"endToEndMs\" : " << it.e2e << " }" << std::endl;
// clang-format on
}
os << "]" << std::endl;
}
void Profiler::reportLayerTime(char const* layerName, float timeMs) noexcept {
if (mIterator == mLayers.end()) {
bool const first = !mLayers.empty() && mLayers.begin()->name == layerName;
mUpdatesCount += mLayers.empty() || first;
if (first) {
mIterator = mLayers.begin();
} else {
mLayers.emplace_back();
mLayers.back().name = layerName;
mIterator = mLayers.end() - 1;
}
}
mIterator->timeMs += timeMs;
++mIterator;
}
void Profiler::print(std::ostream& os) const noexcept {
std::string const nameHdr("Layer");
std::string const timeHdr(" Time (ms)");
std::string const avgHdr(" Avg. Time (ms)");
std::string const percentageHdr(" Time %");
float const totalTimeMs = getTotalTime();
auto const cmpLayer = [](LayerProfile const& a, LayerProfile const& b) {
return a.name.size() < b.name.size();
};
auto const longestName =
std::max_element(mLayers.begin(), mLayers.end(), cmpLayer);
auto const nameLength =
std::max(longestName->name.size() + 1, nameHdr.size());
auto const timeLength = timeHdr.size();
auto const avgLength = avgHdr.size();
auto const percentageLength = percentageHdr.size();
os << std::endl
<< "=== Profile (" << mUpdatesCount << " iterations ) ===" << std::endl
<< std::setw(nameLength) << nameHdr << timeHdr << avgHdr << percentageHdr
<< std::endl;
for (auto const& p : mLayers) {
// clang-format off
os << std::setw(nameLength) << p.name << std::setw(timeLength) << std::fixed << std::setprecision(2) << p.timeMs
<< std::setw(avgLength) << std::fixed << std::setprecision(4) << p.timeMs / mUpdatesCount
<< std::setw(percentageLength) << std::fixed << std::setprecision(1) << p.timeMs / totalTimeMs * 100
<< std::endl;
}
{
os << std::setw(nameLength) << "Total" << std::setw(timeLength) << std::fixed << std::setprecision(2)
<< totalTimeMs << std::setw(avgLength) << std::fixed << std::setprecision(4) << totalTimeMs / mUpdatesCount
<< std::setw(percentageLength) << std::fixed << std::setprecision(1) << 100.0 << std::endl;
// clang-format on
}
os << std::endl;
}
void Profiler::exportJSONProfile(std::string const& fileName) const noexcept {
std::ofstream os(fileName, std::ofstream::trunc);
os << "[" << std::endl
<< " { \"count\" : " << mUpdatesCount << " }" << std::endl;
auto const totalTimeMs = getTotalTime();
for (auto const& l : mLayers) {
// clang-format off
os << ", {" << " \"name\" : \"" << l.name << "\""
", \"timeMs\" : " << l.timeMs
<< ", \"averageMs\" : " << l.timeMs / mUpdatesCount
<< ", \"percentage\" : " << l.timeMs / totalTimeMs * 100
<< " }" << std::endl;
// clang-format on
}
os << "]" << std::endl;
}
void dumpInputs(nvinfer1::IExecutionContext const& context,
Bindings const& bindings, std::ostream& os) {
os << "Input Tensors:" << std::endl;
bindings.dumpInputs(context, os);
}
void dumpOutputs(nvinfer1::IExecutionContext const& context,
Bindings const& bindings, std::ostream& os) {
os << "Output Tensors:" << std::endl;
bindings.dumpOutputs(context, os);
}
void exportJSONOutput(nvinfer1::IExecutionContext const& context,
Bindings const& bindings, std::string const& fileName,
int32_t batch) {
std::ofstream os(fileName, std::ofstream::trunc);
std::string sep = " ";
auto const output = bindings.getOutputBindings();
os << "[" << std::endl;
for (auto const& binding : output) {
// clang-format off
os << sep << "{ \"name\" : \"" << binding.first << "\"" << std::endl;
sep = ", ";
os << " " << sep << "\"dimensions\" : \"";
bindings.dumpBindingDimensions(binding.second, context, os);
os << "\"" << std::endl;
os << " " << sep << "\"values\" : [ ";
bindings.dumpBindingValues(context, binding.second, os, sep, batch);
os << " ]" << std::endl << " }" << std::endl;
// clang-format on
}
os << "]" << std::endl;
}
} // namespace sample