Files
FastDeploy/python/fastdeploy/vision/facedet/contrib/yolov7face.py
CoolCola a5d23c57d0 [Bug fix]add yolov7face landmarks (#1297)
* add yolov7face benchmark

* fix review problem

* fix review problems
2023-02-14 18:36:28 +08:00

186 lines
6.6 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class Yolov7FacePreprocessor:
def __init__(self):
"""Create a preprocessor for Yolov7Face
"""
self._preprocessor = C.vision.facedet.Yolov7Preprocessor()
def run(self, input_ims):
"""Preprocess input images for Yolov7Face
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
@property
def size(self):
"""
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
"""
return self._preprocessor.size
@property
def padding_color_value(self):
"""
padding value for preprocessing, default [114.0, 114.0, 114.0]
"""
# padding value, size should be the same as channels
return self._preprocessor.padding_color_value
@property
def is_scale_up(self):
"""
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
"""
return self._preprocessor.is_scale_up
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._preprocessor.size = wh
@padding_color_value.setter
def padding_color_value(self, value):
assert isinstance(
value, list
), "The value to set `padding_color_value` must be type of list."
self._preprocessor.padding_color_value = value
@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
value,
bool), "The value to set `is_scale_up` must be type of bool."
self._preprocessor.is_scale_up = value
class Yolov7FacePostprocessor:
def __init__(self):
"""Create a postprocessor for Yolov7Face
"""
self._postprocessor = C.vision.facedet.Yolov7FacePostprocessor()
def run(self, runtime_results, ims_info):
"""Postprocess the runtime results for Yolov7Face
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:param: ims_info: (list of dict)Record input_shape and output_shape
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results, ims_info)
@property
def conf_threshold(self):
"""
confidence threshold for postprocessing, default is 0.5
"""
return self._postprocessor.conf_threshold
@property
def nms_threshold(self):
"""
nms threshold for postprocessing, default is 0.45
"""
return self._postprocessor.nms_threshold
@property
def landmarks_per_face(self):
"""
landmarks per face for postprocessing, default is 5
"""
return self._postprocessor.landmarks_per_face
@conf_threshold.setter
def conf_threshold(self, conf_threshold):
assert isinstance(conf_threshold, float),\
"The value to set `conf_threshold` must be type of float."
self._postprocessor.conf_threshold = conf_threshold
@nms_threshold.setter
def nms_threshold(self, nms_threshold):
assert isinstance(nms_threshold, float),\
"The value to set `nms_threshold` must be type of float."
self._postprocessor.nms_threshold = nms_threshold
@landmarks_per_face.setter
def landmarks_per_face(self, landmarks_per_face):
assert isinstance(landmarks_per_face, int),\
"The value to set `landmarks_per_face` must be type of int."
self._postprocessor.landmarks_per_face = landmarks_per_face
class YOLOv7Face(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a YOLOv7Face model exported by YOLOv7Face.
:param model_file: (str)Path of model file, e.g ./yolov7face.onnx
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(YOLOv7Face, self).__init__(runtime_option)
self._model = C.vision.facedet.YOLOv7Face(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "YOLOv7Face initialize failed."
def predict(self, input_image):
"""Detect the location and key points of human faces from an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: FaceDetectionResult
"""
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of DetectionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get YOLOv7Preprocessor object of the loaded model
:return YOLOv7Preprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get YOLOv7Postprocessor object of the loaded model
:return YOLOv7Postprocessor
"""
return self._model.postprocessor