Files
FastDeploy/examples/vision/ocr/PP-OCRv3/python/infer.py
2023-01-04 07:35:51 +00:00

218 lines
8.0 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
)
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
parser.add_argument(
"--cls_bs",
type=int,
default=1,
help="Classification model inference batch size.")
parser.add_argument(
"--rec_bs",
type=int,
default=6,
help="Recognition model inference batch size")
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
det_option.set_cpu_thread_num(args.cpu_thread_num)
cls_option.set_cpu_thread_num(args.cpu_thread_num)
rec_option.set_cpu_thread_num(args.cpu_thread_num)
if args.device.lower() == "gpu":
det_option.use_gpu(args.device_id)
cls_option.use_gpu(args.device_id)
rec_option.use_gpu(args.device_id)
if args.device.lower() == "kunlunxin":
det_option.use_kunlunxin()
cls_option.use_kunlunxin()
rec_option.use_kunlunxin()
return det_option, cls_option, rec_option
if args.backend.lower() == "trt":
assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU."
det_option.use_trt_backend()
cls_option.use_trt_backend()
rec_option.use_trt_backend()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
elif args.backend.lower() == "pptrt":
assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
det_option.use_trt_backend()
det_option.enable_paddle_trt_collect_shape()
det_option.enable_paddle_to_trt()
cls_option.use_trt_backend()
cls_option.enable_paddle_trt_collect_shape()
cls_option.enable_paddle_to_trt()
rec_option.use_trt_backend()
rec_option.enable_paddle_trt_collect_shape()
rec_option.enable_paddle_to_trt()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model)
cls_option.set_trt_cache_file(args.cls_model)
rec_option.set_trt_cache_file(args.rec_model)
elif args.backend.lower() == "ort":
det_option.use_ort_backend()
cls_option.use_ort_backend()
rec_option.use_ort_backend()
elif args.backend.lower() == "paddle":
det_option.use_paddle_infer_backend()
cls_option.use_paddle_infer_backend()
rec_option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino":
assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU."
det_option.use_openvino_backend()
cls_option.use_openvino_backend()
rec_option.use_openvino_backend()
return det_option, cls_option, rec_option
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
# Classification模型方向分类可选
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Recognition模型文字识别模型
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置
# 用户也可根据自己的需求,个性化配置
det_option, cls_option, rec_option = build_option(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
ppocr_v3.cls_batch_size = args.cls_bs
ppocr_v3.rec_batch_size = args.rec_bs
# 预测图片准备
im = cv2.imread(args.image)
#预测并打印结果
result = ppocr_v3.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")