mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [FlyCV] Bump up FlyCV -> official release 1.0.0 * XPU to KunlunXin * update * update model link * update doc * update device * update code * useless code Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
66 lines
1.9 KiB
Python
Executable File
66 lines
1.9 KiB
Python
Executable File
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--tinypose_model_dir",
|
||
required=True,
|
||
help="path of paddletinypose model directory")
|
||
parser.add_argument(
|
||
"--image", required=True, help="path of test image file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="wether to use tensorrt.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_tinypose_option(args):
|
||
option = fd.RuntimeOption()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.device.lower() == "kunlunxin":
|
||
option.use_kunlunxin()
|
||
|
||
if args.use_trt:
|
||
option.use_trt_backend()
|
||
option.set_trt_input_shape("image", [1, 3, 256, 192])
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
tinypose_model_file = os.path.join(args.tinypose_model_dir, "model.pdmodel")
|
||
tinypose_params_file = os.path.join(args.tinypose_model_dir, "model.pdiparams")
|
||
tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml")
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_tinypose_option(args)
|
||
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
|
||
tinypose_model_file,
|
||
tinypose_params_file,
|
||
tinypose_config_file,
|
||
runtime_option=runtime_option)
|
||
# 预测图片检测结果
|
||
im = cv2.imread(args.image)
|
||
tinypose_result = tinypose_model.predict(im)
|
||
print("Paddle TinyPose Result:\n", tinypose_result)
|
||
|
||
# 预测结果可视化
|
||
vis_im = fd.vision.vis_keypoint_detection(
|
||
im, tinypose_result, conf_threshold=0.5)
|
||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||
print("TinyPose visualized result save in ./visualized_result.jpg")
|