Files
FastDeploy/examples/vision/detection/paddledetection/sophgo/python/infer_ppyoloe_r.py
thunder95 51be3fea78 [Hackthon_4th 177] Support PP-YOLOE-R with BM1684 (#1809)
* first draft

* add robx iou

* add benchmark for ppyoloe_r

* remove trash code

* fix bugs

* add pybind nms rotated option

* add missing head file

* fix bug

* fix bug2

* fix shape bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-21 10:48:05 +08:00

160 lines
5.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
from subprocess import run
from prepare_npz import prepare
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--auto",
action="store_true",
help="Auto download, convert, compile and infer if True")
parser.add_argument(
"--pp_detect_path",
default='/workspace/PaddleDetection',
help="Path of PaddleDetection folder")
parser.add_argument(
"--model_file", required=True, help="Path of sophgo model.")
parser.add_argument("--config_file", required=True, help="Path of config.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
return parser.parse_args()
def export_model(args):
PPDetection_path = args.pp_detect_path
export_str = 'python3 tools/export_model.py \
-c configs/rotate/ppyoloe_r/ppyoloe_r_crn_s_3x_dota.yml \
-output_dir=output_inference \
-o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_r_crn_s_3x_dota.pdparams'
cur_path = os.getcwd()
os.chdir(PPDetection_path)
print(export_str)
run(export_str, shell=True)
cp_str = 'cp -r ./output_inference/ppyoloe_crn_s_300e_coco ' + cur_path
print(cp_str)
run(cp_str, shell=True)
os.chdir(cur_path)
def paddle2onnx():
convert_str = 'paddle2onnx --model_dir ppyoloe_r_crn_s_3x_dota \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--save_file ppyoloe_r_crn_s_3x_dota.onnx \
--enable_dev_version True'
print(convert_str)
run(convert_str, shell=True)
def mlir_prepare():
mlir_path = os.getenv("MODEL_ZOO_PATH")
mlir_path = mlir_path[:-13]
regression_path = os.path.join(mlir_path, 'regression')
mv_str_list = [
'mkdir ppyoloe_r', 'cp -rf ' + os.path.join(
regression_path, 'dataset/COCO2017/') + ' ./ppyoloe_r',
'cp -rf ' + os.path.join(regression_path, 'image/') + ' ./ppyoloe_r',
'cp ppyoloe_r_crn_s_3x_dota.onnx ./ppyoloe_r',
'mkdir ./ppyoloe_r/workspace'
]
for str in mv_str_list:
print(str)
run(str, shell=True)
def image_prepare():
img_str = 'wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/P0861__1.0__1154___824.png'
if not os.path.exists('P0861__1.0__1154___824.png'):
print(img_str)
run(img_str, shell=True)
prepare('P0861__1.0__1154___824.png', [640, 640])
cp_npz_str = 'cp ./inputs.npz ./ppyoloe_r'
print(cp_npz_str)
run(cp_npz_str, shell=True)
def onnx2mlir():
transform_str = 'model_transform.py \
--model_name ppyoloe_r_crn_s_3x_dota \
--model_def ../ppyoloe_r_crn_s_3x_dota.onnx \
--input_shapes [[1,3,1024,1024],[1,2]] \
--keep_aspect_ratio \
--pixel_format rgb \
--mlir ppyoloe_r_crn_s_3x_dota.mlir'
os.chdir('./ppyoloe_r/workspace')
print(transform_str)
run(transform_str, shell=True)
os.chdir('../../')
def mlir2bmodel():
deploy_str = 'model_deploy.py \
--mlir ppyoloe_r_crn_s_3x_dota.mlir \
--quantize F32 \
--chip bm1684x \
--model ppyoloe_r_crn_s_3x_dota_1684x_f32.bmodel'
os.chdir('./ppyoloe_r/workspace')
print(deploy_str)
run(deploy_str, shell=True)
os.chdir('../../')
if __name__ == "__main__":
args = parse_arguments()
if args.auto:
export_model(args)
paddle2onnx()
mlir_prepare()
image_prepare()
onnx2mlir()
mlir2bmodel()
model_file = './ppyoloe/workspace/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel' if args.auto else args.model_file
params_file = ""
config_file = './ppyoloe_r_crn_s_3x_dota/infer_cfg.yml' if args.auto else args.config_file
image_file = './P0861__1.0__1154___824.png' if args.auto else args.image
# 配置runtime加载模型
runtime_option = fd.RuntimeOption()
runtime_option.use_sophgo()
model = fd.vision.detection.PPYOLOER(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.SOPHGO)
# 预测图片分割结果
im = cv2.imread(image_file)
result = model.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.1)
cv2.imwrite("sophgo_result_ppyoloe_r.jpg", vis_im)
print("Visualized result save in ./sophgo_result_ppyoloe_r.jpg")