Files
FastDeploy/benchmark/cpp/benchmark_ppdet.cc
linyangshi 9164796645 [Model] Support DINO & DETR and add PaddleDetectionModel class (#1837)
* 添加paddleclas模型

* 更新README_CN

* 更新README_CN

* 更新README

* update get_model.sh

* update get_models.sh

* update paddleseg models

* update paddle_seg models

* update paddle_seg models

* modified test resources

* update benchmark_gpu_trt.sh

* add paddle detection

* add paddledetection to benchmark

* modified benchmark cmakelists

* update benchmark scripts

* modified benchmark function calling

* modified paddledetection documents

* add PaddleDetectonModel

* reset examples/paddledetection

* resolve conflict

* update pybind

* resolve conflict

* fix bug

* delete debug mode

* update checkarch log

* update trt inputs example

* Update README.md

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-05-05 14:10:33 +08:00

118 lines
4.9 KiB
C++

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
DEFINE_bool(no_nms, false, "Whether the model contains nms.");
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
std::unordered_map<std::string, std::string> config_info;
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
&config_info);
std::string model_name, params_name, config_name;
auto model_format = fastdeploy::ModelFormat::PADDLE;
if (!UpdateModelResourceName(&model_name, &params_name, &config_name,
&model_format, config_info)) {
return -1;
}
auto model_file = FLAGS_model + sep + model_name;
auto params_file = FLAGS_model + sep + params_name;
auto config_file = FLAGS_model + sep + config_name;
if (config_info["backend"] == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
if (config_info["backend"] == "paddle_trt" ||
config_info["backend"] == "trt") {
option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640},
{1, 3, 640, 640});
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2},
{1, 2});
}
auto model_ppdet = vision::detection::PaddleDetectionModel(
model_file, params_file, config_file, option, model_format);
vision::DetectionResult res;
if (config_info["precision_compare"] == "true") {
// Run once at least
model_ppdet.Predict(im, &res);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
// Save result to -> disk.
std::string det_result_path = "ppdet_result.txt";
benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
// Load result from <- disk.
vision::DetectionResult res_loaded;
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
// Calculate diff between two results.
auto det_diff =
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
<< ", max=" << det_diff.boxes.max
<< ", min=" << det_diff.boxes.min << std::endl;
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
<< ", max=" << det_diff.labels.max
<< ", min=" << det_diff.labels.min << std::endl;
// 2. Test tensor diff
std::cout << "=============== Test tensor diff =================\n";
std::vector<vision::DetectionResult> batch_res;
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors;
std::vector<cv::Mat> imgs;
imgs.push_back(im);
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs);
model_ppdet.GetPreprocessor().Run(&fd_images, &input_tensors);
input_tensors[0].name = "image";
input_tensors[1].name = "scale_factor";
input_tensors[2].name = "im_shape";
input_tensors.pop_back();
model_ppdet.Infer(input_tensors, &output_tensors);
model_ppdet.GetPostprocessor().Run(output_tensors, &batch_res);
// Save tensor to -> disk.
auto& tensor_dump = output_tensors[0];
std::string det_tensor_path = "ppdet_tensor.txt";
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path);
// Load tensor from <- disk.
fastdeploy::FDTensor tensor_loaded;
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path);
// Calculate diff between two tensors.
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis(
tensor_dump, tensor_loaded);
std::cout << "Tensor diff: mean=" << det_tensor_diff.data.mean
<< ", max=" << det_tensor_diff.data.max
<< ", min=" << det_tensor_diff.data.min << std::endl;
}
// Run profiling
if (FLAGS_no_nms) {
model_ppdet.GetPostprocessor().ApplyNMS();
}
BENCHMARK_MODEL(model_ppdet, model_ppdet.Predict(im, &res))
auto vis_im = vision::VisDetection(im, res,0.3);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}