Files
FastDeploy/fastdeploy/vision/classification/ppcls/ppcls_pybind.cc
舞影凌风 973c746d06 [RKNPU2]support rknpu2 ClasModel #957 (#964)
* [RKNPU2]support rknpu2 ClasModel #957

* [RKNPU2]support rknpu2 ClasModel #957

* [RKNPU2]support rknpu2 add Resnet50_vd example  #957

* [RKNPU2]support rknpu2 add Resnet50_vd example  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957

* [RKNPU2]support rknpu2, improve doc  #957
2022-12-28 17:58:18 +08:00

94 lines
4.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPaddleClas(pybind11::module& m) {
pybind11::class_<vision::classification::PaddleClasPreprocessor>(
m, "PaddleClasPreprocessor")
.def(pybind11::init<std::string>())
.def("run", [](vision::classification::PaddleClasPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
}
if (!self.WithGpu()) {
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
}
return outputs;
})
.def("use_gpu", [](vision::classification::PaddleClasPreprocessor& self, int gpu_id = -1) {
self.UseGpu(gpu_id);
})
.def("disable_normalize", [](vision::classification::PaddleClasPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute", [](vision::classification::PaddleClasPreprocessor& self) {
self.DisablePermute();
});
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
m, "PaddleClasPostprocessor")
.def(pybind11::init<int>())
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<FDTensor>& inputs) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in PaddleClasPostprocessor.");
}
return results;
})
.def("run", [](vision::classification::PaddleClasPostprocessor& self, std::vector<pybind11::array>& input_array) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in PaddleClasPostprocessor.");
}
return results;
})
.def_property("topk", &vision::classification::PaddleClasPostprocessor::GetTopk, &vision::classification::PaddleClasPostprocessor::SetTopk);
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
m, "PaddleClasModel")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("clone", [](vision::classification::PaddleClasModel& self) {
return self.Clone();
})
.def("predict", [](vision::classification::PaddleClasModel& self, pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data);
vision::ClassifyResult result;
self.Predict(im, &result);
return result;
})
.def("batch_predict", [](vision::classification::PaddleClasModel& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly("preprocessor", &vision::classification::PaddleClasModel::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::classification::PaddleClasModel::GetPostprocessor);
}
} // namespace fastdeploy