mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* Support DP+TP+EP hybrid parallel deployment strategy * Support DP+TP+EP hybrid parallel deployment strategy * fix conflict * add moe_tp_ep function split_allgather_out * del tp_group in moe_cutlass_backend * for ci * fix parallel_config for ci * del log
465 lines
16 KiB
Python
465 lines
16 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import re
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import Dict, List
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddleformers.transformers import PretrainedModel
|
|
from paddleformers.transformers.conversion_utils import split_or_merge_func
|
|
from paddleformers.utils.log import logger
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.models.utils import LayerIdPlaceholder
|
|
|
|
|
|
def check_tensor_parallel_prerequisites(
|
|
fd_config: FDConfig,
|
|
cls: PretrainedModel,
|
|
tensor_parallel_filtered_map: Dict[str, partial],
|
|
safetensor_keys: List[str],
|
|
) -> None:
|
|
"""check_tensor_parallel_prerequisites"""
|
|
if fd_config.parallel_config.tensor_parallel_size > 1:
|
|
tensor_parallel_map = cls._get_tensor_parallel_mappings(
|
|
fd_config.model_config.pretrained_config, is_split=True
|
|
)
|
|
if not tensor_parallel_map:
|
|
logger.error(
|
|
"filtered_quant_map should not be empty. \
|
|
parallel splitting required, but _get_tensor_parallel_mappings is not implemented."
|
|
)
|
|
filtered_tp_keys = cls._resolve_prefix_keys(tensor_parallel_map.keys(), safetensor_keys)
|
|
for k, v in filtered_tp_keys.items():
|
|
tensor_parallel_filtered_map[v] = tensor_parallel_map.pop(k)
|
|
if not tensor_parallel_filtered_map:
|
|
logger.error(
|
|
"tensor_parallel_filtered_map should not be empty. \
|
|
The weights required for tensor parallel splitting are inconsistent with the model's weights."
|
|
)
|
|
|
|
|
|
def extract_prefix(weight_name: str) -> str:
|
|
"""extract_prefix"""
|
|
if weight_name.startswith("."):
|
|
return ""
|
|
parts = weight_name.split(".", 1)
|
|
return parts[0] if len(parts) > 1 else ""
|
|
|
|
|
|
def has_prefix(prefix_name: str, weight_name: str):
|
|
"""has_prefix"""
|
|
return prefix_name == extract_prefix(weight_name)
|
|
|
|
|
|
class TensorSplitMode(Enum):
|
|
"""TensorSplitMode"""
|
|
|
|
GQA = "is_gqa"
|
|
TP_ROW_BIAS = "is_tp_row_bias"
|
|
TRANSPOSE = "transpose"
|
|
QKV = "is_old_qkv"
|
|
PairFused = "is_naive_2fuse"
|
|
TripletFused = "is_naive_3fuse"
|
|
|
|
|
|
def extract_placeholders(template: str):
|
|
"""extract_placeholders"""
|
|
return set(re.findall(r"{(\w+)}", template))
|
|
|
|
|
|
class SafeDict(dict):
|
|
"""SafeDict"""
|
|
|
|
def __missing__(self, key):
|
|
return "{" + key + "}"
|
|
|
|
|
|
def has_placeholders(placeholders):
|
|
"""has_placeholders"""
|
|
return len(placeholders) > 0
|
|
|
|
|
|
def update_final_actions(params, final_actions, key, action):
|
|
"""update_final_actions"""
|
|
new_key = key.format_map(SafeDict(params))
|
|
final_actions[new_key] = action
|
|
|
|
|
|
def build_expanded_keys(
|
|
base_actions,
|
|
num_layers,
|
|
start_layer: int = -1,
|
|
num_experts: int = 0,
|
|
text_num_experts: int = 0,
|
|
img_num_experts: int = 0,
|
|
):
|
|
"""build_expanded_keys"""
|
|
final_actions = {}
|
|
for key, action in base_actions.items():
|
|
placeholders = extract_placeholders(key)
|
|
if not has_placeholders(placeholders):
|
|
final_actions[key] = action
|
|
else:
|
|
if LayerIdPlaceholder.LAYER_ID.value in placeholders:
|
|
for layer_id in range(num_layers):
|
|
update_final_actions(
|
|
{LayerIdPlaceholder.LAYER_ID.value: layer_id},
|
|
final_actions,
|
|
key,
|
|
action,
|
|
)
|
|
elif LayerIdPlaceholder.FFN_LAYER_ID.value in placeholders:
|
|
if start_layer < 0:
|
|
continue
|
|
for layer_id in range(start_layer):
|
|
update_final_actions(
|
|
{LayerIdPlaceholder.FFN_LAYER_ID.value: layer_id},
|
|
final_actions,
|
|
key,
|
|
action,
|
|
)
|
|
elif (
|
|
LayerIdPlaceholder.MOE_LAYER_ID.value in placeholders
|
|
and LayerIdPlaceholder.EXPERT_ID.value in placeholders
|
|
):
|
|
if start_layer < 0:
|
|
continue
|
|
for layer_id in range(start_layer, num_layers):
|
|
for export_id in range(num_experts):
|
|
update_final_actions(
|
|
{
|
|
LayerIdPlaceholder.MOE_LAYER_ID.value: layer_id,
|
|
LayerIdPlaceholder.EXPERT_ID.value: export_id,
|
|
},
|
|
final_actions,
|
|
key,
|
|
action,
|
|
)
|
|
elif (
|
|
LayerIdPlaceholder.MOE_LAYER_ID.value in placeholders
|
|
and LayerIdPlaceholder.TEXT_EXPERT_ID.value in placeholders
|
|
):
|
|
if start_layer < 0:
|
|
continue
|
|
for layer_id in range(start_layer, num_layers):
|
|
for export_id in range(text_num_experts):
|
|
update_final_actions(
|
|
{
|
|
LayerIdPlaceholder.MOE_LAYER_ID.value: layer_id,
|
|
LayerIdPlaceholder.TEXT_EXPERT_ID.value: export_id,
|
|
},
|
|
final_actions,
|
|
key,
|
|
action,
|
|
)
|
|
elif (
|
|
LayerIdPlaceholder.MOE_LAYER_ID.value in placeholders
|
|
and LayerIdPlaceholder.IMG_EXPERT_ID.value in placeholders
|
|
):
|
|
if start_layer < 0:
|
|
continue
|
|
for layer_id in range(start_layer, num_layers):
|
|
for export_id in range(text_num_experts, text_num_experts + img_num_experts):
|
|
update_final_actions(
|
|
{
|
|
LayerIdPlaceholder.MOE_LAYER_ID.value: layer_id,
|
|
LayerIdPlaceholder.IMG_EXPERT_ID.value: export_id,
|
|
},
|
|
final_actions,
|
|
key,
|
|
action,
|
|
)
|
|
elif LayerIdPlaceholder.MOE_LAYER_ID.value in placeholders and len(placeholders) == 1:
|
|
if start_layer < 0:
|
|
continue
|
|
for layer_id in range(start_layer, num_layers):
|
|
update_final_actions(
|
|
{LayerIdPlaceholder.MOE_LAYER_ID.value: layer_id},
|
|
final_actions,
|
|
key,
|
|
action,
|
|
)
|
|
else:
|
|
raise ValueError(f"{key} does not match any case.")
|
|
return final_actions
|
|
|
|
|
|
def gqa_qkv_split_func(
|
|
tensor_parallel_degree,
|
|
tensor_parallel_rank,
|
|
num_attention_heads,
|
|
num_key_value_heads,
|
|
head_dim,
|
|
):
|
|
"""
|
|
gqa_qkv_split_func
|
|
"""
|
|
|
|
def fn(x, is_column=True):
|
|
"""func"""
|
|
|
|
def get_shape(tensor):
|
|
"""get_shape"""
|
|
return tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape
|
|
|
|
def slice_tensor(tensor, start, end):
|
|
"""slice_tensor"""
|
|
shape = get_shape(tensor)
|
|
if len(shape) == 1:
|
|
return tensor[start:end]
|
|
elif is_column:
|
|
return tensor[..., start:end]
|
|
else:
|
|
return tensor[start:end, ...]
|
|
|
|
q_end = num_attention_heads * head_dim
|
|
k_end = q_end + num_key_value_heads * head_dim
|
|
v_end = k_end + num_key_value_heads * head_dim
|
|
|
|
q = slice_tensor(x, 0, q_end)
|
|
k = slice_tensor(x, q_end, k_end)
|
|
v = slice_tensor(x, k_end, v_end)
|
|
|
|
def split_tensor(tensor, degree):
|
|
"""
|
|
split_tensor
|
|
"""
|
|
shape = get_shape(tensor)
|
|
size = shape[-1] if is_column else shape[0]
|
|
block_size = size // degree
|
|
if hasattr(tensor, "get_shape"):
|
|
return [slice_tensor(tensor, i * block_size, (i + 1) * block_size) for i in range(degree)]
|
|
else:
|
|
if isinstance(x, paddle.Tensor):
|
|
if is_column:
|
|
return paddle.split(tensor, degree, axis=-1)
|
|
else:
|
|
return paddle.split(tensor, degree, axis=0)
|
|
else:
|
|
if is_column:
|
|
return np.split(tensor, degree, axis=-1)
|
|
else:
|
|
return np.split(tensor, degree, axis=0)
|
|
|
|
q_list = split_tensor(q, tensor_parallel_degree)
|
|
repeat_kv = num_key_value_heads < tensor_parallel_degree and tensor_parallel_degree % num_key_value_heads == 0
|
|
repeat_num = tensor_parallel_degree // num_key_value_heads if repeat_kv else 1
|
|
if repeat_kv:
|
|
k_list = split_tensor(k, num_key_value_heads)
|
|
v_list = split_tensor(v, num_key_value_heads)
|
|
else:
|
|
k_list = split_tensor(k, tensor_parallel_degree)
|
|
v_list = split_tensor(v, tensor_parallel_degree)
|
|
|
|
if tensor_parallel_rank is None:
|
|
res = []
|
|
for q_i, k_i, v_i in zip(q_list, k_list, v_list):
|
|
if is_column:
|
|
if isinstance(x, paddle.Tensor):
|
|
res.append(paddle.concat([q_i, k_i, v_i], axis=-1))
|
|
else:
|
|
res.append(np.concatenate([q_i, k_i, v_i], axis=-1))
|
|
else:
|
|
if isinstance(x, paddle.Tensor):
|
|
res.append(paddle.concat([q_i, k_i, v_i], axis=0))
|
|
else:
|
|
res.append(np.concatenate([q_i, k_i, v_i], axis=0))
|
|
return res
|
|
else:
|
|
if isinstance(x, paddle.Tensor):
|
|
if is_column:
|
|
return paddle.concat(
|
|
[
|
|
q_list[tensor_parallel_rank],
|
|
k_list[tensor_parallel_rank // repeat_num],
|
|
v_list[tensor_parallel_rank // repeat_num],
|
|
],
|
|
axis=-1,
|
|
)
|
|
else:
|
|
return paddle.concat(
|
|
[
|
|
q_list[tensor_parallel_rank],
|
|
k_list[tensor_parallel_rank // repeat_num],
|
|
v_list[tensor_parallel_rank // repeat_num],
|
|
],
|
|
axis=0,
|
|
)
|
|
else:
|
|
if is_column:
|
|
return np.concatenate(
|
|
[
|
|
q_list[tensor_parallel_rank],
|
|
k_list[tensor_parallel_rank // repeat_num],
|
|
v_list[tensor_parallel_rank // repeat_num],
|
|
],
|
|
axis=-1,
|
|
)
|
|
else:
|
|
return np.concatenate(
|
|
[
|
|
q_list[tensor_parallel_rank],
|
|
k_list[tensor_parallel_rank // repeat_num],
|
|
v_list[tensor_parallel_rank // repeat_num],
|
|
],
|
|
axis=0,
|
|
)
|
|
|
|
return fn
|
|
|
|
|
|
def gqa_qkv_merge_func(num_attention_heads, num_key_value_heads, head_dim):
|
|
"""
|
|
gqa_qkv_merge_func
|
|
"""
|
|
|
|
def fn(weight_list, is_column=True):
|
|
"""fn"""
|
|
tensor_parallel_degree = len(weight_list)
|
|
local_num_attention_heads = num_attention_heads // tensor_parallel_degree
|
|
local_num_key_value_heads = num_key_value_heads // tensor_parallel_degree
|
|
|
|
is_paddle_tensor = not isinstance(weight_list[0], np.ndarray)
|
|
|
|
def get_shape(tensor):
|
|
"""
|
|
get_shape
|
|
"""
|
|
return tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape
|
|
|
|
def slice_tensor(tensor, start, end):
|
|
"""
|
|
slice_tensor
|
|
"""
|
|
if len(get_shape(tensor)) == 1:
|
|
return tensor[start:end]
|
|
elif is_column:
|
|
return tensor[..., start:end]
|
|
else:
|
|
return tensor[start:end, ...]
|
|
|
|
q_list, k_list, v_list = [], [], []
|
|
|
|
for weight in weight_list:
|
|
q_end = local_num_attention_heads * head_dim
|
|
k_end = q_end + local_num_key_value_heads * head_dim
|
|
v_end = k_end + local_num_key_value_heads * head_dim
|
|
|
|
q = slice_tensor(weight, 0, q_end)
|
|
k = slice_tensor(weight, q_end, k_end)
|
|
v = slice_tensor(weight, k_end, v_end)
|
|
|
|
q_list.append(q)
|
|
k_list.append(k)
|
|
v_list.append(v)
|
|
|
|
merged = q_list + k_list + v_list
|
|
|
|
if is_paddle_tensor:
|
|
if is_column:
|
|
tensor = paddle.concat(merged, axis=-1)
|
|
else:
|
|
tensor = paddle.concat(merged, axis=0)
|
|
if tensor.place.is_gpu_place():
|
|
tensor = tensor._copy_to(paddle.CUDAPinnedPlace(), False)
|
|
return tensor
|
|
else:
|
|
if is_column:
|
|
return np.concatenate(merged, axis=-1)
|
|
else:
|
|
return np.concatenate(merged, axis=0)
|
|
|
|
return fn
|
|
|
|
|
|
def split_or_merge_qkv_func(
|
|
is_split,
|
|
tensor_parallel_degree,
|
|
tensor_parallel_rank,
|
|
num_attention_heads,
|
|
num_key_value_heads,
|
|
head_dim,
|
|
):
|
|
"""
|
|
split_or_merge_qkv_func
|
|
"""
|
|
if is_split:
|
|
return gqa_qkv_split_func(
|
|
tensor_parallel_degree=tensor_parallel_degree,
|
|
tensor_parallel_rank=tensor_parallel_rank,
|
|
num_attention_heads=num_attention_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
head_dim=head_dim,
|
|
)
|
|
else:
|
|
return gqa_qkv_merge_func(
|
|
num_attention_heads=num_attention_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
head_dim=head_dim,
|
|
)
|
|
|
|
|
|
def split_or_merge_func_v1(
|
|
is_split,
|
|
tensor_parallel_degree,
|
|
tensor_parallel_rank,
|
|
num_attention_heads=None,
|
|
num_key_value_heads=None,
|
|
head_dim=None,
|
|
):
|
|
"""
|
|
split_or_merge_func_v1
|
|
"""
|
|
|
|
def fn(x, **kwargs):
|
|
"""func"""
|
|
is_gqa = kwargs.pop("is_gqa", False)
|
|
is_tp_row_bias = kwargs.pop("is_tp_row_bias", False)
|
|
if is_tp_row_bias:
|
|
tensor = x[:, ...]
|
|
if isinstance(tensor, paddle.Tensor):
|
|
res = tensor / tensor_parallel_degree
|
|
else:
|
|
res = paddle.to_tensor(tensor, paddle.get_default_dtype()) / tensor_parallel_degree
|
|
return res
|
|
elif is_gqa:
|
|
func = split_or_merge_qkv_func(
|
|
is_split=is_split,
|
|
tensor_parallel_degree=tensor_parallel_degree,
|
|
tensor_parallel_rank=tensor_parallel_rank,
|
|
num_attention_heads=num_attention_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
head_dim=head_dim,
|
|
)
|
|
is_column = kwargs.pop("is_column", True)
|
|
return func(x, is_column=is_column)
|
|
else:
|
|
func = split_or_merge_func(
|
|
is_split=is_split,
|
|
tensor_parallel_degree=tensor_parallel_degree,
|
|
tensor_parallel_rank=tensor_parallel_rank,
|
|
num_attention_heads=num_attention_heads,
|
|
)
|
|
is_column = kwargs.pop("is_column", True)
|
|
is_naive_2fuse = kwargs.pop("is_naive_2fuse", False)
|
|
return func(x, is_column=is_column, is_naive_2fuse=is_naive_2fuse)
|
|
|
|
return fn
|