Files
FastDeploy/fastdeploy/model_executor/model_loader/default_loader.py
freeliuzc 94b6e7a341
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
[MTP][RL]support rl reshard wenxin-tools-145 (#4173)
* support mtp reshard in rl mode

* fix function
2025-09-23 20:40:26 +08:00

97 lines
3.4 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import contextlib
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
from fastdeploy.model_executor.load_weight_utils import (
load_composite_checkpoint,
measure_time,
)
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.platforms import current_platform
class DefaultModelLoader(BaseModelLoader):
"""ModelLoader that can load registered models"""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
logger.info("Load the model and weights using DefaultModelLoader")
def download_model(self, model_config: ModelConfig) -> None:
"""download_model"""
pass
def clean_memory_fragments(self, state_dict: dict) -> None:
"""clean_memory_fragments"""
if current_platform.is_cuda():
if state_dict:
for k, v in state_dict.items():
if isinstance(v, paddle.Tensor):
v.value().get_tensor()._clear()
paddle.device.cuda.empty_cache()
paddle.device.synchronize()
@measure_time
def load_weights(self, model, fd_config: FDConfig, architectures: str) -> None:
model_class = ModelRegistry.get_pretrain_cls(architectures)
state_dict = load_composite_checkpoint(
fd_config.model_config.model,
model_class,
fd_config,
return_numpy=True,
)
model.set_state_dict(state_dict)
self.clean_memory_fragments(state_dict)
def load_model(self, fd_config: FDConfig) -> nn.Layer:
architectures = fd_config.model_config.architectures[0]
logger.info(f"Starting to load model {architectures}")
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
if fd_config.speculative_config.model_type != "mtp":
architectures = architectures.replace("Ernie5ForCausalLM", "Ernie5MoeForCausalLM")
else:
architectures = architectures.replace("Ernie5ForCausalLM", "Ernie5MTPForCausalLM")
architectures = architectures + "RL"
context = paddle.LazyGuard()
else:
context = contextlib.nullcontext()
with context:
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(fd_config)
model.eval()
# RL model not need set_state_dict
if fd_config.load_config.dynamic_load_weight:
return model
# TODO(gongshaotian): Now, only support safetensor
self.load_weights(model, fd_config, architectures)
return model