mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters * Add utils of sorting det boxes * Fix code naming convention * Fix code naming convention * Fix code naming convention * Fix bug in the Classify process * Imporve OCR Readme * Fix diff in Cls model * Update Model Download Link in Readme * Fix diff in PPOCRv2 * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Fix conflict * Add readme for OCRResult * Improve OCR readme * Add OCRResult readme * Improve OCR readme * Improve OCR readme * Add Model Quantization Demo * Fix Model Quantization Readme * Fix Model Quantization Readme * Add the function to do PTQ quantization * Improve quant tools readme * Improve quant tool readme * Improve quant tool readme * Add PaddleInference-GPU for OCR Rec model * Add QAT method to fastdeploy-quantization tool * Remove examples/slim for now * Move configs folder * Add Quantization Support for Classification Model * Imporve ways of importing preprocess * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Improve Quantization configs and readme * Add support for multi-inputs model
151 lines
4.1 KiB
Python
151 lines
4.1 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import cv2
|
|
import os
|
|
import numpy as np
|
|
import paddle
|
|
|
|
|
|
def generate_scale(im, target_shape):
|
|
origin_shape = im.shape[:2]
|
|
im_size_min = np.min(origin_shape)
|
|
im_size_max = np.max(origin_shape)
|
|
target_size_min = np.min(target_shape)
|
|
target_size_max = np.max(target_shape)
|
|
im_scale = float(target_size_min) / float(im_size_min)
|
|
if np.round(im_scale * im_size_max) > target_size_max:
|
|
im_scale = float(target_size_max) / float(im_size_max)
|
|
im_scale_x = im_scale
|
|
im_scale_y = im_scale
|
|
|
|
return im_scale_y, im_scale_x
|
|
|
|
|
|
def yolo_image_preprocess(img, target_shape=[640, 640]):
|
|
# Resize image
|
|
im_scale_y, im_scale_x = generate_scale(img, target_shape)
|
|
img = cv2.resize(
|
|
img,
|
|
None,
|
|
None,
|
|
fx=im_scale_x,
|
|
fy=im_scale_y,
|
|
interpolation=cv2.INTER_LINEAR)
|
|
# Pad
|
|
im_h, im_w = img.shape[:2]
|
|
h, w = target_shape[:]
|
|
if h != im_h or w != im_w:
|
|
canvas = np.ones((h, w, 3), dtype=np.float32)
|
|
canvas *= np.array([114.0, 114.0, 114.0], dtype=np.float32)
|
|
canvas[0:im_h, 0:im_w, :] = img.astype(np.float32)
|
|
img = canvas
|
|
img = np.transpose(img / 255, [2, 0, 1])
|
|
|
|
return img.astype(np.float32)
|
|
|
|
|
|
def cls_resize_short(img, target_size):
|
|
|
|
img_h, img_w = img.shape[:2]
|
|
percent = float(target_size) / min(img_w, img_h)
|
|
w = int(round(img_w * percent))
|
|
h = int(round(img_h * percent))
|
|
|
|
return cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
def crop_image(img, target_size, center):
|
|
|
|
height, width = img.shape[:2]
|
|
size = target_size
|
|
|
|
if center == True:
|
|
w_start = (width - size) // 2
|
|
h_start = (height - size) // 2
|
|
else:
|
|
w_start = np.random.randint(0, width - size + 1)
|
|
h_start = np.random.randint(0, height - size + 1)
|
|
w_end = w_start + size
|
|
h_end = h_start + size
|
|
|
|
return img[h_start:h_end, w_start:w_end, :]
|
|
|
|
|
|
def cls_image_preprocess(img):
|
|
|
|
# resize
|
|
img = cls_resize_short(img, target_size=256)
|
|
# crop
|
|
img = crop_image(img, target_size=224, center=True)
|
|
|
|
#ToCHWImage & Normalize
|
|
img = np.transpose(img / 255, [2, 0, 1])
|
|
|
|
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
|
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
|
img -= img_mean
|
|
img /= img_std
|
|
|
|
return img.astype(np.float32)
|
|
|
|
|
|
def ppdet_resize_no_keepratio(img, target_shape=[640, 640]):
|
|
im_shape = img.shape
|
|
|
|
resize_h, resize_w = target_shape
|
|
im_scale_y = resize_h / im_shape[0]
|
|
im_scale_x = resize_w / im_shape[1]
|
|
|
|
scale_factor = np.asarray([im_scale_y, im_scale_x], dtype=np.float32)
|
|
return cv2.resize(
|
|
img, None, None, fx=im_scale_x, fy=im_scale_y,
|
|
interpolation=2), scale_factor
|
|
|
|
|
|
def ppdet_normliaze(img, is_scale=True):
|
|
|
|
mean = [0.485, 0.456, 0.406]
|
|
std = [0.229, 0.224, 0.225]
|
|
img = img.astype(np.float32, copy=False)
|
|
|
|
if is_scale:
|
|
scale = 1.0 / 255.0
|
|
img *= scale
|
|
|
|
mean = np.array(mean)[np.newaxis, np.newaxis, :]
|
|
std = np.array(std)[np.newaxis, np.newaxis, :]
|
|
img -= mean
|
|
img /= std
|
|
return img
|
|
|
|
|
|
def hwc_to_chw(img):
|
|
img = img.transpose((2, 0, 1))
|
|
return img
|
|
|
|
|
|
def ppdet_image_preprocess(img):
|
|
|
|
img, scale_factor = ppdet_resize_no_keepratio(img, target_shape=[640, 640])
|
|
|
|
img = np.transpose(img / 255, [2, 0, 1])
|
|
|
|
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
|
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
|
img -= img_mean
|
|
img /= img_std
|
|
|
|
return img.astype(np.float32), scale_factor
|