mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
102 lines
3.7 KiB
Python
102 lines
3.7 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
import pickle
|
|
import numpy as np
|
|
|
|
|
|
def test_matting_rvm_cpu():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
|
|
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
|
|
fd.download_and_decompress(model_url, ".")
|
|
fd.download(input_url, ".")
|
|
model_path = "rvm/rvm_mobilenetv3_fp32.onnx"
|
|
# use ORT
|
|
runtime_option = fd.RuntimeOption()
|
|
runtime_option.use_ort_backend()
|
|
model = fd.vision.matting.RobustVideoMatting(
|
|
model_path, runtime_option=runtime_option)
|
|
|
|
cap = cv2.VideoCapture(input_url)
|
|
|
|
frame_id = 0
|
|
while True:
|
|
_, frame = cap.read()
|
|
if frame is None:
|
|
break
|
|
result = model.predict(frame)
|
|
# compare diff
|
|
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
|
|
result_alpha = np.array(result.alpha).reshape(1920, 1080)
|
|
diff = np.fabs(expect_alpha - result_alpha)
|
|
thres = 1e-05
|
|
assert diff.max(
|
|
) < thres, "The label diff is %f, which is bigger than %f" % (
|
|
diff.max(), thres)
|
|
frame_id = frame_id + 1
|
|
cv2.waitKey(30)
|
|
if frame_id >= 10:
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
break
|
|
|
|
|
|
def test_matting_rvm_gpu_trt():
|
|
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
|
|
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
|
|
fd.download_and_decompress(model_url, ".")
|
|
fd.download(input_url, ".")
|
|
model_path = "rvm/rvm_mobilenetv3_trt.onnx"
|
|
# use TRT
|
|
runtime_option = fd.RuntimeOption()
|
|
runtime_option.use_gpu()
|
|
runtime_option.use_trt_backend()
|
|
runtime_option.set_trt_input_shape("src", [1, 3, 1920, 1080])
|
|
runtime_option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
|
|
[1, 16, 240, 135])
|
|
runtime_option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
|
|
[1, 20, 120, 68])
|
|
runtime_option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
|
|
[1, 40, 60, 34])
|
|
runtime_option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
|
|
[1, 64, 30, 17])
|
|
model = fd.vision.matting.RobustVideoMatting(
|
|
model_path, runtime_option=runtime_option)
|
|
|
|
cap = cv2.VideoCapture("./video.mp4")
|
|
|
|
frame_id = 0
|
|
while True:
|
|
_, frame = cap.read()
|
|
if frame is None:
|
|
break
|
|
result = model.predict(frame)
|
|
# compare diff
|
|
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
|
|
result_alpha = np.array(result.alpha).reshape(1920, 1080)
|
|
diff = np.fabs(expect_alpha - result_alpha)
|
|
thres = 1e-04
|
|
assert diff.max(
|
|
) < thres, "The label diff is %f, which is bigger than %f" % (
|
|
diff.max(), thres)
|
|
frame_id = frame_id + 1
|
|
cv2.waitKey(30)
|
|
if frame_id >= 10:
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|
|
break
|