Files
FastDeploy/tests/eval_example/test_rvm.py
WJJ1995 718698a32a [Model] add RobustVideoMatting model (#400)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

* add rvm support

* support rvm model

* add rvm demo

* fixed bugs

* add rvm readme

* add TRT support

* add trt support

* add rvm test

* add EXPORT.md

* rename export.md

* rm poros doxyen

* deal with comments

* deal with comments

* add rvm video_mode note

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-10-26 14:30:04 +08:00

102 lines
3.7 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
def test_matting_rvm_cpu():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "rvm/rvm_mobilenetv3_fp32.onnx"
# use ORT
runtime_option = fd.RuntimeOption()
runtime_option.use_ort_backend()
model = fd.vision.matting.RobustVideoMatting(
model_path, runtime_option=runtime_option)
cap = cv2.VideoCapture(input_url)
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
result_alpha = np.array(result.alpha).reshape(1920, 1080)
diff = np.fabs(expect_alpha - result_alpha)
thres = 1e-05
assert diff.max(
) < thres, "The label diff is %f, which is bigger than %f" % (
diff.max(), thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break
def test_matting_rvm_gpu_trt():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
fd.download_and_decompress(model_url, ".")
fd.download(input_url, ".")
model_path = "rvm/rvm_mobilenetv3_trt.onnx"
# use TRT
runtime_option = fd.RuntimeOption()
runtime_option.use_gpu()
runtime_option.use_trt_backend()
runtime_option.set_trt_input_shape("src", [1, 3, 1920, 1080])
runtime_option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
[1, 16, 240, 135])
runtime_option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
[1, 20, 120, 68])
runtime_option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
[1, 40, 60, 34])
runtime_option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
[1, 64, 30, 17])
model = fd.vision.matting.RobustVideoMatting(
model_path, runtime_option=runtime_option)
cap = cv2.VideoCapture("./video.mp4")
frame_id = 0
while True:
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
# compare diff
expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
result_alpha = np.array(result.alpha).reshape(1920, 1080)
diff = np.fabs(expect_alpha - result_alpha)
thres = 1e-04
assert diff.max(
) < thres, "The label diff is %f, which is bigger than %f" % (
diff.max(), thres)
frame_id = frame_id + 1
cv2.waitKey(30)
if frame_id >= 10:
cap.release()
cv2.destroyAllWindows()
break