Files
FastDeploy/python/fastdeploy/vision/evaluation/classify.py
2022-09-14 15:44:13 +08:00

83 lines
2.9 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import re
import time
import collections
def topk_accuracy(topk_list, label_list):
match_array = np.logical_or.reduce(topk_list == label_list, axis=1)
topk_acc_score = match_array.sum() / match_array.shape[0]
return topk_acc_score
def eval_classify(model, image_file_path, label_file_path, topk=5):
from tqdm import trange
import cv2
import math
result_list = []
label_list = []
image_label_dict = {}
assert os.path.isdir(
image_file_path), "The image_file_path:{} is not a directory.".format(
image_file_path)
assert os.path.isfile(
label_file_path), "The label_file_path:{} is not a file.".format(
label_file_path)
assert isinstance(topk, int), "The tok:{} is not int type".format(topk)
with open(label_file_path, 'r') as file:
lines = file.readlines()
for line in lines:
items = line.strip().split()
image_name = items[0]
label = items[1]
image_label_dict[image_name] = int(label)
images_num = len(image_label_dict)
twenty_percent_images_num = math.ceil(images_num * 0.2)
start_time = 0
end_time = 0
average_inference_time = 0
scores = collections.OrderedDict()
for (image, label), i in zip(image_label_dict.items(),
trange(
images_num, desc='Inference Progress')):
if i == twenty_percent_images_num:
start_time = time.time()
label_list.append([label])
image_path = os.path.join(image_file_path, image)
im = cv2.imread(image_path)
result = model.predict(im, topk)
result_list.append(result.label_ids)
if i == images_num - 1:
end_time = time.time()
average_inference_time = round(
(end_time - start_time) / (images_num - twenty_percent_images_num), 4)
topk_acc_score = topk_accuracy(np.array(result_list), np.array(label_list))
if topk == 1:
scores.update({'topk1': topk_acc_score})
scores.update({
'topk1_average_inference_time(s)': average_inference_time
})
elif topk == 5:
scores.update({'topk5': topk_acc_score})
scores.update({
'topk5_average_inference_time(s)': average_inference_time
})
return scores