mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
83 lines
2.9 KiB
Python
83 lines
2.9 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import os
|
|
import re
|
|
import time
|
|
import collections
|
|
|
|
|
|
def topk_accuracy(topk_list, label_list):
|
|
match_array = np.logical_or.reduce(topk_list == label_list, axis=1)
|
|
topk_acc_score = match_array.sum() / match_array.shape[0]
|
|
return topk_acc_score
|
|
|
|
|
|
def eval_classify(model, image_file_path, label_file_path, topk=5):
|
|
from tqdm import trange
|
|
import cv2
|
|
import math
|
|
|
|
result_list = []
|
|
label_list = []
|
|
image_label_dict = {}
|
|
assert os.path.isdir(
|
|
image_file_path), "The image_file_path:{} is not a directory.".format(
|
|
image_file_path)
|
|
assert os.path.isfile(
|
|
label_file_path), "The label_file_path:{} is not a file.".format(
|
|
label_file_path)
|
|
assert isinstance(topk, int), "The tok:{} is not int type".format(topk)
|
|
|
|
with open(label_file_path, 'r') as file:
|
|
lines = file.readlines()
|
|
for line in lines:
|
|
items = line.strip().split()
|
|
image_name = items[0]
|
|
label = items[1]
|
|
image_label_dict[image_name] = int(label)
|
|
images_num = len(image_label_dict)
|
|
twenty_percent_images_num = math.ceil(images_num * 0.2)
|
|
start_time = 0
|
|
end_time = 0
|
|
average_inference_time = 0
|
|
scores = collections.OrderedDict()
|
|
for (image, label), i in zip(image_label_dict.items(),
|
|
trange(
|
|
images_num, desc='Inference Progress')):
|
|
if i == twenty_percent_images_num:
|
|
start_time = time.time()
|
|
|
|
label_list.append([label])
|
|
image_path = os.path.join(image_file_path, image)
|
|
im = cv2.imread(image_path)
|
|
result = model.predict(im, topk)
|
|
result_list.append(result.label_ids)
|
|
if i == images_num - 1:
|
|
end_time = time.time()
|
|
average_inference_time = round(
|
|
(end_time - start_time) / (images_num - twenty_percent_images_num), 4)
|
|
topk_acc_score = topk_accuracy(np.array(result_list), np.array(label_list))
|
|
if topk == 1:
|
|
scores.update({'topk1': topk_acc_score})
|
|
scores.update({
|
|
'topk1_average_inference_time(s)': average_inference_time
|
|
})
|
|
elif topk == 5:
|
|
scores.update({'topk5': topk_acc_score})
|
|
scores.update({
|
|
'topk5_average_inference_time(s)': average_inference_time
|
|
})
|
|
return scores
|