mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			545 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			545 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import re
 | |
| from functools import partial
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| from fastdeploy.model_executor.graph_optimization.decorator import (
 | |
|     support_graph_optimization,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.activation import SiluAndMul
 | |
| from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
 | |
| from fastdeploy.model_executor.layers.linear import (
 | |
|     MergedColumnParallelLinear,
 | |
|     ReplicatedLinear,
 | |
|     RowParallelLinear,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
 | |
| from fastdeploy.model_executor.layers.moe.moe import FusedMoE
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| from fastdeploy.model_executor.models.qwen3 import Qwen3Attention
 | |
| 
 | |
| 
 | |
| class Qwen3MoeBlock(nn.Layer):
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         layer_id: int,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.expert_parallel_size = fd_config.parallel_config.expert_parallel_size
 | |
|         self.tensor_parallel_size = fd_config.parallel_config.tensor_parallel_size
 | |
|         self.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
 | |
|         self.tp_group = fd_config.parallel_config.tp_group
 | |
| 
 | |
|         self.use_ep = self.expert_parallel_size > 1
 | |
|         self.use_tp = self.tensor_parallel_size > 1
 | |
| 
 | |
|         weight_key_map = {
 | |
|             "up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
 | |
|             "down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
 | |
|         }
 | |
|         self.experts = FusedMoE(
 | |
|             fd_config,
 | |
|             moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
 | |
|             num_experts=fd_config.model_config.num_experts,
 | |
|             top_k=fd_config.model_config.num_experts_per_tok,
 | |
|             layer_idx=layer_id,
 | |
|             weight_key_map=weight_key_map,
 | |
|         )
 | |
| 
 | |
|         self.gate = ReplicatedLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.gate",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=fd_config.model_config.num_experts,
 | |
|             with_bias=False,
 | |
|             skip_quant=True,
 | |
|             weight_dtype="float32",
 | |
|         )
 | |
| 
 | |
|     def split_allgather_out(self, hidden_states: paddle.Tensor, token_num: int):
 | |
|         token_num_per_rank = (token_num + self.tensor_parallel_size - 1) // self.tensor_parallel_size
 | |
|         # AllGather will hang when the data shapes on multi-ranks are different!
 | |
|         part_hidden_states = paddle.zeros(
 | |
|             shape=[token_num_per_rank, hidden_states.shape[1]], dtype=hidden_states.dtype
 | |
|         )
 | |
|         start_offset = self.tensor_parallel_rank * token_num_per_rank
 | |
|         end_offset = (self.tensor_parallel_rank + 1) * token_num_per_rank
 | |
|         if end_offset > token_num:
 | |
|             end_offset = token_num
 | |
|         part_hidden_states[: (end_offset - start_offset), :] = hidden_states[start_offset:end_offset, :]
 | |
|         out = self.experts(part_hidden_states, self.gate)
 | |
|         multi_outs = []
 | |
|         paddle.distributed.all_gather(multi_outs, out, self.tp_group)
 | |
|         out = paddle.concat(multi_outs, axis=0)
 | |
|         out = out[:token_num, :]
 | |
|         return out
 | |
| 
 | |
|     def forward(self, x):
 | |
|         token_num = x.shape[0]
 | |
|         if self.use_ep and self.use_tp and token_num >= self.tensor_parallel_size:
 | |
|             out = self.split_allgather_out(x, token_num)
 | |
|         else:
 | |
|             out = self.experts(x, self.gate)
 | |
|         return out
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """ """
 | |
|         self.gate.load_state_dict(state_dict)
 | |
|         self.experts.load_state_dict(state_dict)
 | |
| 
 | |
| 
 | |
| class Qwen3MLP(nn.Layer):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.nranks = fd_config.parallel_config.tensor_parallel_size
 | |
| 
 | |
|         self.up_gate_proj = MergedColumnParallelLinear(
 | |
|             fd_config,
 | |
|             prefix=f"{prefix}.up_gate_proj",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=fd_config.model_config.intermediate_size * 2,
 | |
|             with_bias=False,
 | |
|             activation=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|         self.down_proj = RowParallelLinear(
 | |
|             fd_config,
 | |
|             prefix=f"{prefix}.down_proj",
 | |
|             input_size=fd_config.model_config.intermediate_size,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|             with_bias=False,
 | |
|         )
 | |
| 
 | |
|         self.act_fn = SiluAndMul(
 | |
|             fd_config,
 | |
|             bias=getattr(self.up_gate_proj, "bias", None),
 | |
|             act_method=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """ """
 | |
|         self.up_gate_proj.load_state_dict(state_dict)
 | |
|         self.down_proj.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """ """
 | |
|         gate_up_out = self.up_gate_proj(x)
 | |
|         act_out = self.act_fn(gate_up_out)
 | |
|         down_out = self.down_proj(act_out)
 | |
|         return down_out
 | |
| 
 | |
| 
 | |
| class Qwen3DecoderLayer(nn.Layer):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         layer_id = int(prefix.split(sep=".")[-1])
 | |
|         self.self_attn = Qwen3Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=f"{prefix}.self_attn",
 | |
|         )
 | |
|         mlp_only_layers = (
 | |
|             [] if not hasattr(fd_config.model_config, "mlp_only_layers") else fd_config.model_config.mlp_only_layers
 | |
|         )
 | |
|         if (layer_id not in mlp_only_layers) and (
 | |
|             fd_config.model_config.num_experts > 0 and (layer_id + 1) % fd_config.model_config.decoder_sparse_step == 0
 | |
|         ):
 | |
|             self.mlp = Qwen3MoeBlock(fd_config, layer_id, prefix=f"{prefix}.mlp")
 | |
|         else:
 | |
|             self.mlp = Qwen3MLP(
 | |
|                 fd_config,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
| 
 | |
|         self.input_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=1e-6,
 | |
|             prefix=f"{prefix}.input_layernorm",
 | |
|         )
 | |
| 
 | |
|         self.post_attention_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=1e-6,
 | |
|             prefix=f"{prefix}.post_attention_layernorm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """ """
 | |
|         self.self_attn.load_state_dict(state_dict)
 | |
|         self.mlp.load_state_dict(state_dict)
 | |
|         self.input_layernorm.load_state_dict(state_dict)
 | |
|         self.post_attention_layernorm.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|         residual: paddle.Tensor = None,
 | |
|     ):
 | |
|         """ """
 | |
|         if residual is None:
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.input_layernorm(hidden_states)
 | |
|         else:
 | |
|             hidden_states, residual = self.input_layernorm(hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.self_attn(
 | |
|             hidden_states=hidden_states,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
| 
 | |
|         # Fully Connected
 | |
|         hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.mlp(hidden_states)
 | |
| 
 | |
|         return hidden_states, residual
 | |
| 
 | |
| 
 | |
| @support_graph_optimization
 | |
| class Qwen3MoeModel(nn.Layer):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the Qwen2Model class.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         """
 | |
|         super().__init__()
 | |
| 
 | |
|         self.num_layers = fd_config.model_config.num_hidden_layers
 | |
|         fd_config.model_config.pretrained_config.prefix_name = "model"
 | |
| 
 | |
|         self.embed_tokens = VocabParallelEmbedding(
 | |
|             fd_config,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             params_dtype=paddle.get_default_dtype,
 | |
|             prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
 | |
|         )
 | |
| 
 | |
|         self.layers = nn.LayerList(
 | |
|             [
 | |
|                 Qwen3DecoderLayer(
 | |
|                     fd_config,
 | |
|                     prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
 | |
|                 )
 | |
|                 for i in range(self.num_layers)
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         self.norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=1e-6,
 | |
|             prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.embed_tokens.load_state_dict(state_dict)
 | |
|         self.norm.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """ """
 | |
|         hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
 | |
| 
 | |
|         residual = None
 | |
| 
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
 | |
|         hidden_states = hidden_states + residual
 | |
| 
 | |
|         out = self.norm(hidden_states)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Qwen3MoeForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     Qwen3MoeForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Qwen3MoeForCausalLM, self).__init__(fd_config)
 | |
| 
 | |
|         self.model = Qwen3MoeModel(fd_config)
 | |
| 
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
| 
 | |
|         self.lm_head = ParallelLMHead(
 | |
|             fd_config,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             prefix="lm_head",
 | |
|         )
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         """ """
 | |
|         return "Qwen3MoeForCausalLM"
 | |
| 
 | |
|     def get_expert_mapping(
 | |
|         self,
 | |
|     ) -> list[tuple[str, str, int, str]]:
 | |
|         # (param_name, weight_name, expert_id, shard_id)
 | |
|         return FusedMoE.make_expert_params_mapping(
 | |
|             num_experts=self.fd_config.model_config.num_experts,
 | |
|             ckpt_gate_proj_name="gate_proj",
 | |
|             ckpt_down_proj_name="down_proj",
 | |
|             ckpt_up_proj_name="up_proj",
 | |
|             param_gate_up_proj_name="experts.up_gate_proj_",
 | |
|             param_down_proj_name="experts.down_proj_",
 | |
|         )
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def load_weights(self, weights_iterator) -> None:
 | |
|         """
 | |
|         Load model parameters from a given weights_iterator object.
 | |
| 
 | |
|         Args:
 | |
|             weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
 | |
|         """
 | |
| 
 | |
|         from fastdeploy.model_executor.utils import (
 | |
|             default_weight_loader,
 | |
|             process_weights_after_loading,
 | |
|         )
 | |
| 
 | |
|         stacked_params_mapping = [
 | |
|             # (param_name, shard_name, shard_id)
 | |
|             ("qkv_proj", "q_proj", "q"),
 | |
|             ("qkv_proj", "k_proj", "k"),
 | |
|             ("qkv_proj", "v_proj", "v"),
 | |
|             ("up_gate_proj", "gate_proj", "gate"),
 | |
|             ("up_gate_proj", "up_proj", "up"),
 | |
|             ("embed_tokens.embeddings", "embed_tokens", None),
 | |
|             ("lm_head.linear", "lm_head", None),
 | |
|         ]
 | |
|         expert_params_mapping = self.get_expert_mapping()
 | |
|         params_dict = dict(self.named_parameters())
 | |
|         process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
 | |
|         for loaded_weight_name, loaded_weight in weights_iterator:
 | |
|             for param_name, weight_name, shard_id in stacked_params_mapping:
 | |
|                 if weight_name not in loaded_weight_name:
 | |
|                     continue
 | |
|                 if "mlp.experts" in loaded_weight_name:
 | |
|                     continue
 | |
|                 model_param_name = loaded_weight_name.replace(weight_name, param_name)
 | |
|                 if model_param_name not in params_dict:
 | |
|                     continue
 | |
|                 param = params_dict[model_param_name]
 | |
|                 weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
 | |
|                 weight_loader(param, loaded_weight, shard_id)
 | |
|                 break
 | |
|             else:
 | |
|                 for mapping in expert_params_mapping:
 | |
|                     param_name, weight_name, expert_id, shard_id = mapping
 | |
|                     if weight_name not in loaded_weight_name:
 | |
|                         continue
 | |
|                     model_param_name = loaded_weight_name.replace(weight_name, param_name)
 | |
|                     if model_param_name not in params_dict:
 | |
|                         continue
 | |
|                     param = params_dict[model_param_name]
 | |
|                     weight_loader = param.weight_loader
 | |
|                     weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
 | |
|                     break
 | |
|                 else:
 | |
|                     model_param_name = loaded_weight_name
 | |
|                     if model_param_name not in params_dict:
 | |
|                         continue
 | |
|                     param = params_dict[model_param_name]
 | |
|                     weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
 | |
|                     weight_loader(param, loaded_weight)
 | |
| 
 | |
|             model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
 | |
|             process_weights_after_loading_fn(model_sublayer_name, param)
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.model.load_state_dict(state_dict)
 | |
|         self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         """ """
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = logits.astype(paddle.float32)
 | |
|         logits[:, self.ori_vocab_size :] = -float("inf")
 | |
| 
 | |
|         return logits
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """ """
 | |
|         hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
 | |
| 
 | |
|         return hidden_states
 | |
| 
 | |
|     def clear_grpah_opt_backend(self):
 | |
|         """Clear graph optimization backend, the captured cuda graph will be cleaned"""
 | |
|         self.model.clear_grpah_opt_backend(fd_config=self.fd_config)
 | |
| 
 | |
| 
 | |
| class Qwen3MoePretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     Qwen3MoePretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def arch_name(self):
 | |
|         return "Qwen3MoeForCausalLM"
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config, is_split=True):
 | |
|         # TODO not support TP split now, next PR will support TP.
 | |
| 
 | |
|         from paddleformers.transformers.conversion_utils import split_or_merge_func
 | |
| 
 | |
|         fn = split_or_merge_func(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|         )
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers, num_experts):
 | |
|             final_actions = {}
 | |
| 
 | |
|             base_actions = {
 | |
|                 "lm_head.weight": partial(fn, is_column=True),
 | |
|                 # Row Linear
 | |
|                 "embed_tokens.weight": partial(fn, is_column=False),
 | |
|                 "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False),
 | |
|             }
 | |
| 
 | |
|             # Column Linear
 | |
|             config.fuse_attention_qkv = False
 | |
|             if config.fuse_attention_qkv:
 | |
|                 base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(fn, is_column=True)
 | |
|             else:
 | |
|                 base_actions["layers.0.self_attn.q_proj.weight"] = partial(fn, is_column=True)
 | |
|                 base_actions["layers.0.self_attn.q_proj.bias"] = partial(fn, is_column=True)
 | |
|                 # if we have enough num_key_value_heads to split, then split it.
 | |
|                 if config.num_key_value_heads % config.tensor_parallel_degree == 0:
 | |
|                     base_actions["layers.0.self_attn.k_proj.weight"] = partial(fn, is_column=True)
 | |
|                     base_actions["layers.0.self_attn.v_proj.weight"] = partial(fn, is_column=True)
 | |
|                     base_actions["layers.0.self_attn.k_proj.bias"] = partial(fn, is_column=True)
 | |
|                     base_actions["layers.0.self_attn.v_proj.bias"] = partial(fn, is_column=True)
 | |
| 
 | |
|             for key, action in base_actions.items():
 | |
|                 if "layers.0." in key:
 | |
|                     for i in range(num_layers):
 | |
|                         final_actions[key.replace("layers.0.", f"layers.{i}.")] = action
 | |
|                 final_actions[key] = action
 | |
| 
 | |
|             base_actions = {
 | |
|                 "layers.0.mlp.experts.0.gate_proj.weight": partial(fn, is_column=True),
 | |
|                 "layers.0.mlp.experts.0.down_proj.weight": partial(fn, is_column=False),
 | |
|                 "layers.0.mlp.experts.0.up_proj.weight": partial(fn, is_column=True),
 | |
|             }
 | |
| 
 | |
|             for key, action in base_actions.items():
 | |
|                 for i in range(num_layers):
 | |
|                     newkey = key.replace("layers.0.", f"layers.{i}.")
 | |
|                     for j in range(num_experts):
 | |
|                         newkey2 = newkey.replace("experts.0.", f"experts.{j}.")
 | |
|                         final_actions[newkey2] = action
 | |
| 
 | |
|             return final_actions
 | |
| 
 | |
|         num_experts = 0
 | |
|         if isinstance(config.num_experts, list):
 | |
|             num_experts = sum(config.num_experts)
 | |
|         elif isinstance(config.num_experts, int):
 | |
|             num_experts = config.num_experts
 | |
|         else:
 | |
|             raise ValueError(f"Not support type of num_experts [{type(config.num_experts)}]")
 | |
| 
 | |
|         mappings = get_tensor_parallel_split_mappings(config.num_hidden_layers, num_experts)
 | |
| 
 | |
|         return mappings
 | 
