mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
416 lines
13 KiB
Python
416 lines
13 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from abc import abstractmethod
|
|
|
|
import deep_ep
|
|
import paddle
|
|
from paddle import nn
|
|
from paddleformers.utils.log import logger
|
|
|
|
import fastdeploy
|
|
from fastdeploy.config import MoEPhase
|
|
from fastdeploy.model_executor.layers.moe.ep import DeepEPEngineBase, EPRunner
|
|
from fastdeploy.utils import singleton
|
|
|
|
|
|
@singleton
|
|
class DeepEPEngine(DeepEPEngineBase):
|
|
"""
|
|
A wrapper class for DeepEP engine.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_max_dispatch_tokens_per_rank: int,
|
|
hidden: int,
|
|
num_experts: int,
|
|
ep_size: int,
|
|
ep_rank: int,
|
|
splitwise_role: str,
|
|
moe_phase: MoEPhase,
|
|
async_finish: bool = False,
|
|
group=None,
|
|
):
|
|
"""
|
|
Initialize the DeepEP engine.
|
|
Args:
|
|
group: The MPI group object.
|
|
ep_size: The number of ranks.
|
|
rank_id: The rank id.
|
|
num_max_dispatch_tokens_per_rank: The maximum number of tokens per rank to dispatch.
|
|
hidden: The hidden dimension of the model.
|
|
num_experts: The number of experts.
|
|
"""
|
|
super().__init__(
|
|
num_max_dispatch_tokens_per_rank,
|
|
hidden,
|
|
num_experts,
|
|
ep_size,
|
|
ep_rank,
|
|
splitwise_role,
|
|
moe_phase,
|
|
async_finish,
|
|
group,
|
|
)
|
|
|
|
def init_deepep_engine(self):
|
|
if self.splitwise_role == "mixed" or self.moe_phase.phase == "prefill":
|
|
self.deepep_engine = deep_ep.Buffer(
|
|
self.group,
|
|
int(1e9),
|
|
0,
|
|
num_experts=self.num_experts,
|
|
low_latency_mode=False,
|
|
num_qps_per_rank=1,
|
|
)
|
|
elif self.moe_phase.phase == "decode":
|
|
logger.info("Initializing Low Latency Buffer")
|
|
self.get_low_latency_buffer()
|
|
else:
|
|
raise ValueError(f"Unknown generation phase {self.moe_phase}")
|
|
|
|
def get_low_latency_buffer(self):
|
|
"""
|
|
Get the DeepEP buffer.
|
|
Args:
|
|
group: The MPI group object.
|
|
num_max_dispatch_tokens_per_rank: The maximum number of tokens per rank to dispatch.
|
|
hidden: The hidden dimension of the model.
|
|
"""
|
|
# NOTES: the low-latency mode will consume much more space than the normal mode
|
|
# So we recommend that `num_max_dispatch_tokens_per_rank`
|
|
# (the actual batch size in the decoding engine) should be less than 256
|
|
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(
|
|
self.num_max_dispatch_tokens_per_rank,
|
|
self.hidden,
|
|
self.ep_size,
|
|
self.num_experts,
|
|
)
|
|
# Allocate a buffer if not existed or not enough buffer size
|
|
if (
|
|
self.deepep_engine is None
|
|
or self.deepep_engine.group != self.group
|
|
or not self.deepep_engine.low_latency_mode
|
|
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes
|
|
):
|
|
# NOTES: for best performance, the QP number **must** be equal to the number of the local experts
|
|
assert self.num_experts % self.ep_size == 0
|
|
self.deepep_engine = deep_ep.Buffer(
|
|
self.group,
|
|
0,
|
|
num_rdma_bytes,
|
|
self.num_experts,
|
|
low_latency_mode=True,
|
|
num_qps_per_rank=self.num_experts // self.num_ranks,
|
|
)
|
|
|
|
def low_latency_dispatch(
|
|
self,
|
|
hidden_states: paddle.Tensor,
|
|
topk_idx: paddle.Tensor,
|
|
expertwise_scale,
|
|
use_fp8: bool = False,
|
|
):
|
|
"""
|
|
Args:
|
|
hidden_states: [token_num, hidden] 'bfloat16/int8'
|
|
topk_idx: [token_num, num_topk] 'int64'
|
|
|
|
Returns:
|
|
recv_hidden_states: [num_local_experts,
|
|
num_max_dispatch_tokens_per_rank * ep_size, hidden]
|
|
ep_size * num_local_experts = num_experts
|
|
recv_count: [num_local_experts]
|
|
recv_count: a tensor shaped `[num_local_experts]` with type `torch.int`, indicating how many tokens each
|
|
expert receive. As mentioned before, all not tokens are valid in `recv_x`.
|
|
handle: the communication handle to be used in the `low_latency_combine` function.
|
|
event: the event after executing the kernel (valid only if `async_finish` is set).
|
|
hook: the receiving hook function (valid only if `return_recv_hook` is set).
|
|
"""
|
|
moe_in_w4a8_scale = None
|
|
(
|
|
packed_recv_x,
|
|
recv_expert_count,
|
|
handle,
|
|
dispatch_hook,
|
|
valid_token_num,
|
|
) = self.deepep_engine.low_latency_dispatch(
|
|
hidden_states,
|
|
moe_in_w4a8_scale,
|
|
topk_idx,
|
|
self.num_max_dispatch_tokens_per_rank,
|
|
self.num_experts,
|
|
use_fp8=use_fp8,
|
|
async_finish=False,
|
|
return_recv_hook=True,
|
|
)
|
|
|
|
return packed_recv_x, recv_expert_count, handle, dispatch_hook, valid_token_num
|
|
|
|
def low_latency_combine(
|
|
self,
|
|
hidden_states: paddle.Tensor,
|
|
topk_idx: paddle.Tensor,
|
|
topk_weights: paddle.Tensor,
|
|
handle,
|
|
):
|
|
"""
|
|
|
|
Return:
|
|
combined_hidden_states: [num_tokens, hidden]
|
|
"""
|
|
combined_hidden_states, combine_hook = self.deepep_engine.low_latency_combine(
|
|
hidden_states,
|
|
topk_idx,
|
|
topk_weights,
|
|
handle,
|
|
async_finish=False,
|
|
return_recv_hook=True,
|
|
)
|
|
return combined_hidden_states, combine_hook
|
|
|
|
def clean_low_latency_buffer(self):
|
|
"""
|
|
clean_low_latency_buffer
|
|
"""
|
|
pass
|
|
|
|
def barrier_all(self):
|
|
"""
|
|
barrier_all
|
|
"""
|
|
self.deepep_engine.barrier_all()
|
|
|
|
|
|
class XPUEPRunner(EPRunner):
|
|
"""
|
|
EPRunnerBase
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
top_k: int,
|
|
hidden: int,
|
|
num_experts: int,
|
|
splitwise_role: str,
|
|
moe_phase: MoEPhase,
|
|
num_max_dispatch_tokens_per_rank: int = 1,
|
|
ep_size: int = 1,
|
|
ep_rank: int = 0,
|
|
redundant_experts_num: int = 0,
|
|
ep_group=None,
|
|
):
|
|
super().__init__(
|
|
top_k,
|
|
hidden,
|
|
num_experts,
|
|
splitwise_role,
|
|
moe_phase,
|
|
num_max_dispatch_tokens_per_rank,
|
|
ep_size,
|
|
ep_rank,
|
|
redundant_experts_num,
|
|
ep_group,
|
|
)
|
|
|
|
def init_ep_engine(self):
|
|
self.ep_engine = DeepEPEngine(
|
|
num_max_dispatch_tokens_per_rank=self.num_max_dispatch_tokens_per_rank,
|
|
hidden=self.hidden,
|
|
num_experts=self.num_experts + self.redundant_experts_num,
|
|
ep_size=self.ep_size,
|
|
ep_rank=self.ep_rank,
|
|
splitwise_role=self.splitwise_role,
|
|
moe_phase=self.moe_phase,
|
|
group=self.ep_group,
|
|
)
|
|
|
|
def moe_select(self, layer: nn.Layer, gate_out: paddle.Tensor):
|
|
"""
|
|
moe_select
|
|
"""
|
|
if layer.redundant_table_manger is not None:
|
|
(
|
|
ep_rank_to_expert_id_list,
|
|
expert_id_to_ep_rank_array,
|
|
expert_in_rank_num_list,
|
|
tokens_per_expert_stats_list,
|
|
) = layer.redundant_table_manger.get_ep_rank_to_expert_id_list_by_layer(layer.layer_idx)
|
|
|
|
topk_idx, topk_weights = fastdeploy.model_executor.ops.xpu.moe_redundant_topk_select(
|
|
gating_logits=gate_out,
|
|
expert_id_to_ep_rank_array=expert_id_to_ep_rank_array,
|
|
expert_in_rank_num_list=expert_in_rank_num_list,
|
|
tokens_per_expert_stats_list=tokens_per_expert_stats_list,
|
|
bias=layer.gate_correction_bias,
|
|
moe_topk=self.top_k,
|
|
apply_norm_weight=True, # apply_norm_weight
|
|
enable_softmax_top_k_fused=False,
|
|
redundant_ep_rank_num_plus_one=layer.fd_config.model_config.redundant_experts_num + 1,
|
|
)
|
|
else:
|
|
topk_idx, topk_weights = fastdeploy.model_executor.ops.xpu.moe_topk_select(
|
|
gate_out,
|
|
layer.gate_correction_bias,
|
|
self.top_k,
|
|
True, # apply_norm_weight,
|
|
)
|
|
return topk_idx, topk_weights
|
|
|
|
@abstractmethod
|
|
def dispatch(self, *args, **kwargs):
|
|
"""
|
|
dispatch
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def combine(self, *args, **kwargs):
|
|
"""
|
|
combine
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class XPUEPPrefillRunner(XPUEPRunner):
|
|
"""
|
|
EPPrefillRunner
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
top_k: int,
|
|
hidden: int,
|
|
num_experts: int,
|
|
splitwise_role: str,
|
|
num_max_dispatch_tokens_per_rank: int,
|
|
ep_size: int = 1,
|
|
ep_rank: int = 0,
|
|
redundant_experts_num: int = 0,
|
|
ep_group=None,
|
|
moe_phase: MoEPhase = MoEPhase("prefill"),
|
|
):
|
|
super().__init__(
|
|
top_k,
|
|
hidden,
|
|
num_experts,
|
|
splitwise_role,
|
|
moe_phase,
|
|
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
|
|
ep_size=ep_size,
|
|
ep_rank=ep_rank,
|
|
redundant_experts_num=redundant_experts_num,
|
|
ep_group=ep_group,
|
|
)
|
|
|
|
def dispatch(
|
|
self,
|
|
x: paddle.Tensor,
|
|
topk_idx: paddle.Tensor,
|
|
topk_weights: paddle.Tensor,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.num_combined_tokens = x.shape[0]
|
|
x_scale_tensor = kwargs.get("x_scale_tensor", None)
|
|
dispatch_args = {
|
|
"x": (x, x_scale_tensor) if x_scale_tensor is not None else x,
|
|
"topk_idx": topk_idx,
|
|
"topk_weights": topk_weights,
|
|
}
|
|
return self.ep_engine.deepep_engine.dispatch(**dispatch_args)
|
|
|
|
def combine(
|
|
self,
|
|
tmp_ffn_out: paddle.Tensor,
|
|
handle: tuple,
|
|
recv_topk_weights: paddle.Tensor,
|
|
):
|
|
combine_args = {
|
|
"x": tmp_ffn_out,
|
|
"topk_weights": recv_topk_weights,
|
|
"num_combined_tokens": self.num_combined_tokens,
|
|
}
|
|
fused_moe_out, _, _ = self.ep_engine.deepep_engine.combine(**combine_args)
|
|
|
|
return fused_moe_out
|
|
|
|
|
|
class XPUEPDecoderRunner(XPUEPRunner):
|
|
"""
|
|
EPDecoderRunner
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
top_k: int,
|
|
hidden: int,
|
|
num_experts: int,
|
|
splitwise_role: str,
|
|
num_max_dispatch_tokens_per_rank: int,
|
|
ep_size: int = 1,
|
|
ep_rank: int = 0,
|
|
redundant_experts_num: int = 0,
|
|
ep_group=None,
|
|
moe_phase: MoEPhase = MoEPhase("decode"),
|
|
):
|
|
super().__init__(
|
|
top_k,
|
|
hidden,
|
|
num_experts,
|
|
splitwise_role,
|
|
moe_phase,
|
|
num_max_dispatch_tokens_per_rank,
|
|
ep_size=ep_size,
|
|
ep_rank=ep_rank,
|
|
redundant_experts_num=redundant_experts_num,
|
|
ep_group=ep_group,
|
|
)
|
|
|
|
def dispatch(
|
|
self,
|
|
x: paddle.Tensor,
|
|
topk_idx: paddle.Tensor,
|
|
topk_weights: paddle.Tensor,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
expertwise_scale = kwargs.get("expertwise_scale", None)
|
|
use_fp8 = expertwise_scale is not None
|
|
|
|
(
|
|
recv_hidden_states,
|
|
recv_expert_count,
|
|
handle,
|
|
dispatch_hook,
|
|
valid_token_num,
|
|
) = self.ep_engine.low_latency_dispatch(x, topk_idx, expertwise_scale, use_fp8)
|
|
# no need to call dispatch_hook here, because it has already been done in xDeepEP
|
|
# if dispatch_hook is not None:
|
|
# dispatch_hook()
|
|
|
|
return recv_hidden_states, recv_expert_count, handle, valid_token_num
|
|
|
|
def combine(self, ffn_out, topk_idx, topk_weights, handle):
|
|
combined_hidden_states, combine_hook = self.ep_engine.low_latency_combine(
|
|
ffn_out, topk_idx, topk_weights, handle
|
|
)
|
|
if combine_hook is not None:
|
|
combine_hook()
|
|
|
|
return combined_hidden_states
|