mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 b3fac5bde1
			
		
	
	b3fac5bde1
	
	
		
			
	
		
	
	
		
			Some checks failed
		
		
	
	CE Compile Job / ce_job_pre_check (push) Has been cancelled
				
			CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
				
			CE Compile Job / FD-Clone-Linux (push) Has been cancelled
				
			CE Compile Job / Show Code Archive Output (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8090 (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8689 (push) Has been cancelled
				
			CE Compile Job / CE_UPLOAD (push) Has been cancelled
				
			Deploy GitHub Pages / deploy (push) Has been cancelled
				
			Publish Job / publish_pre_check (push) Has been cancelled
				
			Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
				
			Publish Job / FD-Clone-Linux (push) Has been cancelled
				
			Publish Job / Show Code Archive Output (push) Has been cancelled
				
			Publish Job / BUILD_SM8090 (push) Has been cancelled
				
			Publish Job / BUILD_SM8689 (push) Has been cancelled
				
			Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
				
			Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
				
			Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
				
			Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
				
			Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
				
			Publish Job / Run Base Tests (push) Has been cancelled
				
			Publish Job / Run Accuracy Tests (push) Has been cancelled
				
			Publish Job / Run Stable Tests (push) Has been cancelled
				
			CI Images Build / FD-Clone-Linux (push) Has been cancelled
				
			CI Images Build / Show Code Archive Output (push) Has been cancelled
				
			CI Images Build / CI Images Build (push) Has been cancelled
				
			CI Images Build / BUILD_SM8090 (push) Has been cancelled
				
			CI Images Build / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
				
			CI Images Build / Run FastDeploy LogProb Tests (push) Has been cancelled
				
			CI Images Build / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
				
			CI Images Build / Run Base Tests (push) Has been cancelled
				
			CI Images Build / Run Accuracy Tests (push) Has been cancelled
				
			CI Images Build / Run Stable Tests (push) Has been cancelled
				
			CI Images Build / Publish Docker Images Pre Check (push) Has been cancelled
				
			* support c8 for ernie * add unittest * support vl * fix c8
		
			
				
	
	
		
			238 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			238 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from typing import TYPE_CHECKING, Dict, Optional
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from fastdeploy.model_executor.forward_meta import ForwardMeta
 | |
| 
 | |
| import os
 | |
| 
 | |
| from safetensors import safe_open
 | |
| 
 | |
| from fastdeploy.model_executor.layers.utils import get_tensor
 | |
| from fastdeploy.model_executor.utils import default_weight_loader
 | |
| 
 | |
| 
 | |
| class Attention(nn.Layer):
 | |
|     """
 | |
|     The AttentionLayer.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         layer_id: int,
 | |
|         v_head_dim: int = -1,
 | |
|         rope_type: str = "",
 | |
|         qkv_bias: Optional[paddle.Tensor] = None,
 | |
|         qkv_scale: Optional[paddle.Tensor] = None,
 | |
|         prefix: str = "",
 | |
|         out_scale: float = -1.0,
 | |
|         linear_shift: paddle.Tensor = None,
 | |
|         linear_smooth: paddle.Tensor = None,
 | |
|         use_neox_rotary_style: bool = False,
 | |
|         use_qk_norm: bool = False,
 | |
|         rms_norm_eps: float = 1e-6,
 | |
|     ) -> None:
 | |
|         """
 | |
|         Initializes `LMLayer` with the given parameters.
 | |
| 
 | |
|         Args:
 | |
|             fd_config (dict): The config of LM model.
 | |
|             layer_id (int): The id of current layer.
 | |
|             v_head_dim (int, optional): The head dim of value. Defaults to -1.
 | |
|             rope_type (str, optional): The type of RoPE. Defaults to "".
 | |
|             qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
 | |
|             qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None.
 | |
|             prefix (str, optional): The name of current layer. Defaults to "".
 | |
|             linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None.
 | |
|             linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None.
 | |
|             use_qk_norm (bool, optional): Whether to apply rmsnorm on QA after rope. Defaults to False.
 | |
|             rms_norm_eps (float, optional): The epsilon of RMSNorm. Defaults to 1e-6.
 | |
| 
 | |
|         Raises:
 | |
|             ValueError: If the `v_head_dim` is less than 0.
 | |
|         """
 | |
|         super().__init__()
 | |
|         self.fd_config = fd_config
 | |
|         self.num_heads: int = (
 | |
|             fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_size
 | |
|         )
 | |
|         self.head_dim: int = fd_config.model_config.head_dim
 | |
|         self.kv_num_heads: int = max(
 | |
|             1,
 | |
|             fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_size,
 | |
|         )
 | |
|         self.layer_id: int = layer_id
 | |
|         self.v_head_dim: int = v_head_dim if v_head_dim > 0 else self.head_dim
 | |
|         self.rope_type: str = rope_type
 | |
|         self.qk_head_dim: int = self.head_dim
 | |
|         self.prefix: str = prefix
 | |
|         # not use
 | |
|         self.linear_shift: paddle.Tensor | None = linear_shift
 | |
|         self.linear_smooth: paddle.Tensor | None = linear_smooth
 | |
|         self.qkv_bias: paddle.Tensor | None = qkv_bias
 | |
|         self.qkv_scale: paddle.Tensor | None = qkv_scale
 | |
|         self._dtype = self._helper.get_default_dtype()
 | |
| 
 | |
|         self.out_scale: float = out_scale
 | |
|         self.use_neox_rotary_style: bool = use_neox_rotary_style
 | |
| 
 | |
|         if fd_config.quant_config and hasattr(fd_config.quant_config, "kv_cache_quant_type"):
 | |
|             self.quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(self)
 | |
|         else:
 | |
|             self.quant_method = None
 | |
| 
 | |
|         if self.quant_method is None:
 | |
|             logger.info(f"Attention is running in cache kv {self._dtype} mode")
 | |
|         else:
 | |
|             logger.info(f"Attention is running in cache kv {self.quant_method.cache_quant_config.quant_type} mode")
 | |
|         self.use_qk_norm = use_qk_norm
 | |
|         self.rms_norm_eps = rms_norm_eps
 | |
|         if self.use_qk_norm:
 | |
|             self.q_norm_key = f"{self.prefix}.q_norm"
 | |
|             self.k_norm_key = f"{self.prefix}.k_norm"
 | |
| 
 | |
|         self.init_weight()
 | |
|         if (
 | |
|             fd_config.moba_attention_config is not None
 | |
|             and fd_config.moba_attention_config.moba_encoder_top_k_left is not None
 | |
|             and fd_config.moba_attention_config.moba_encoder_top_k_right is not None
 | |
|             and fd_config.moba_attention_config.moba_decoder_top_k_left is not None
 | |
|             and fd_config.moba_attention_config.moba_decoder_top_k_right is not None
 | |
|         ):
 | |
|             mlp_weight_path = os.path.join(
 | |
|                 fd_config.model_config.model, fd_config.moba_attention_config.mlp_weight_name
 | |
|             )
 | |
|             self.moba_use_mlp = mlp_weight_path is not None and os.path.exists(mlp_weight_path)
 | |
|             moba_block_size = fd_config.moba_attention_config.moba_block_size
 | |
|             moba_max_seq_length = fd_config.moba_attention_config.moba_max_seq_length
 | |
|             if self.moba_use_mlp:
 | |
|                 mlp_weight = {}
 | |
|                 with safe_open(mlp_weight_path, framework="np", device="cpu") as f:
 | |
|                     for key_name in f.keys():
 | |
|                         weight = f.get_tensor(key_name)
 | |
|                         weight = paddle.Tensor(weight, zero_copy=True)
 | |
|                         weight = weight._copy_to(paddle.framework._current_expected_place(), False)
 | |
|                         mlp_weight[key_name] = weight
 | |
| 
 | |
|                 if self.layer_id < fd_config.model_config.num_hidden_layers - 1:
 | |
|                     self.attn_gate_weight = mlp_weight[
 | |
|                         f"ernie.layers.{self.layer_id}.self_attn.attn_gate.weight"
 | |
|                     ].astype(paddle.get_default_dtype())[
 | |
|                         fd_config.parallel_config.tensor_parallel_rank
 | |
|                         * self.kv_num_heads : (fd_config.parallel_config.tensor_parallel_rank + 1)
 | |
|                         * self.kv_num_heads
 | |
|                     ]
 | |
|                     assert self.attn_gate_weight.shape[1] % moba_block_size == 0
 | |
| 
 | |
|             self.cache_k_block_means = paddle.zeros(
 | |
|                 [
 | |
|                     fd_config.parallel_config.max_num_seqs,
 | |
|                     moba_max_seq_length // moba_block_size,
 | |
|                     self.kv_num_heads,
 | |
|                     self.head_dim,
 | |
|                 ],
 | |
|                 dtype=paddle.get_default_dtype(),
 | |
|             )
 | |
| 
 | |
|     def init_weight(self):
 | |
|         if self.quant_method is not None:
 | |
|             self.quant_method.create_weights(
 | |
|                 self,
 | |
|                 weight_loader=(
 | |
|                     self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
 | |
|                 ),
 | |
|             )
 | |
| 
 | |
|         if self.use_qk_norm:
 | |
|             self.q_norm_weight = self.create_parameter(
 | |
|                 shape=[self.qk_head_dim],
 | |
|                 dtype="float32",
 | |
|                 is_bias=False,
 | |
|                 default_initializer=paddle.nn.initializer.Constant(0),
 | |
|             )
 | |
| 
 | |
|             self.k_norm_weight = self.create_parameter(
 | |
|                 shape=[self.qk_head_dim],
 | |
|                 dtype="float32",
 | |
|                 is_bias=False,
 | |
|                 default_initializer=paddle.nn.initializer.Constant(0),
 | |
|             )
 | |
| 
 | |
|     def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
 | |
|         """
 | |
|         Attention only have quant related scales not other parameters.
 | |
|         """
 | |
|         if self.quant_method is not None:
 | |
|             self.quant_method.process_loaded_weights(self, state_dict)
 | |
|         if self.use_qk_norm:
 | |
|             q_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.q_norm_key + ".weight")))
 | |
|             k_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.k_norm_key + ".weight")))
 | |
|             self.q_norm_weight.set_value(q_norm_weight_tensor.astype("float32"))
 | |
|             self.k_norm_weight.set_value(k_norm_weight_tensor.astype("float32"))
 | |
| 
 | |
|     def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
 | |
|         loaded_weight = get_tensor(loaded_weight).cast(paddle.get_default_dtype())
 | |
|         if self.quant_method.cache_quant_config.has_zero_point:  # cache_int4_zp
 | |
|             loaded_weight = 1.0 / loaded_weight
 | |
|         else:
 | |
|             loaded_weight = self.quant_method.cache_quant_config.max_bound / loaded_weight
 | |
| 
 | |
|         param.copy_(loaded_weight, False)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         q: paddle.Tensor = None,
 | |
|         k: paddle.Tensor = None,
 | |
|         v: paddle.Tensor = None,
 | |
|         qkv: paddle.Tensor = None,
 | |
|         compressed_kv: paddle.Tensor = None,
 | |
|         k_pe: paddle.Tensor = None,
 | |
|         forward_meta: ForwardMeta = None,
 | |
|     ) -> paddle.Tensor:
 | |
|         """
 | |
|         The forward function of attention layer.
 | |
|         args:
 | |
|             q: the query tensor
 | |
|             k: the key tensor
 | |
|             v: the value tensor
 | |
|             forward_meta: the forward meta data
 | |
|             compressed_kv: optional compressed key-value cache (for MLA)
 | |
|             k_pe: optional key positional encoding (for MLA)
 | |
|         """
 | |
|         return forward_meta.attn_backend.forward(
 | |
|             q,
 | |
|             k,
 | |
|             v,
 | |
|             qkv,
 | |
|             compressed_kv,
 | |
|             k_pe,
 | |
|             self,
 | |
|             forward_meta,
 | |
|         )
 |