Files
FastDeploy/tests/layers/test_sampler.py
李泳桦 a012e3608b [Feature] support logits processors (#4515)
* [feat] provide an interface for logits processors and a builtin LogitBiasLogitsProcessor

* [chore] fix code style

* [fix] add unit test & fix existing bugs

* [feat] add engine/worker arg --logits-processors

* [fix] redefine user args as logits_processors_args and fix some bugs

* [fix] fix test_sampler

* Update fastdeploy/model_executor/logits_processor/builtin.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update fastdeploy/model_executor/logits_processor/__init__.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update tests/model_executor/test_logits_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* [fix] fix typo

* Update fastdeploy/engine/sampling_params.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* [fix] fix bracelet

* [chore] redefine logits processor interface: pass the entire share_inputs into LP, do not copy share_inputs and logits

* [doc] add docs

* [fix] fix logit bias processor not applied when decoding is too fast & add docs and tests

* [fix] fix redundant code

* [feat] skip apply() if no bias is specified

---------

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-29 00:08:53 +08:00

163 lines
6.3 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
import paddle.nn.functional as F
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler
def _create_fake_logits(batch_size: int, vocab_size: int) -> paddle.Tensor:
fake_logits = paddle.rand(shape=[batch_size, vocab_size], dtype="float32")
return fake_logits
def _create_penalty_tensor(batch_size: int, penalty_value: float) -> paddle.Tensor:
return paddle.full(shape=[batch_size, 1], fill_value=penalty_value, dtype="float32")
def _create_tokens_tensor(
batch_size: int,
max_seq_len: int,
) -> paddle.Tensor:
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len], fill_value=-1, dtype="int64")
return pre_token_ids
def _create_default_sampling_metadata(
batch_size: int,
min_seq_len: int,
max_seq_len: int,
max_num_logprobs: int = None,
) -> SamplingMetadata:
fake_sampling_metadata = SamplingMetadata(
temperature=paddle.full(shape=[batch_size, 1], fill_value=0.9, dtype="float32"),
top_p=paddle.full(shape=[batch_size, 1], fill_value=0.7, dtype="float32"),
prompt_ids=paddle.full(shape=[batch_size, max_seq_len], fill_value=0, dtype="int64"),
prompt_lens=paddle.full(shape=[batch_size, 1], fill_value=5, dtype="int64"),
step_idx=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64"),
pre_token_ids=_create_tokens_tensor(batch_size, max_seq_len),
frequency_penalties=_create_penalty_tensor(batch_size, 0.0),
presence_penalties=_create_penalty_tensor(batch_size, 0.0),
repetition_penalties=_create_penalty_tensor(batch_size, 1.0),
min_dec_lens=paddle.full(shape=[batch_size, 1], fill_value=min_seq_len, dtype="int64"),
bad_words_token_ids=paddle.full(shape=[batch_size], fill_value=-1, dtype="int64"),
eos_token_ids=paddle.full(shape=[batch_size], fill_value=-2, dtype="int64"),
min_p=paddle.randn([batch_size]),
seed=paddle.to_tensor([[2025]]),
logits_processors=None,
)
if max_num_logprobs is not None:
fake_sampling_metadata.max_num_logprobs = max_num_logprobs
return fake_sampling_metadata
def test_sampler():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
sampler = Sampler()
logits = _create_fake_logits(batch_size, vocab_size)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
next_tokens = sampler(logits, sampling_metadata)
print(next_tokens)
def get_baseline_logprobs(logits, sampling_metadata, logprobs_mode, token_ids):
if logprobs_mode == "raw_logprobs":
logprobs = F.log_softmax(logits, axis=-1)
elif logprobs_mode == "raw_logits":
logprobs = logits.clone()
elif logprobs_mode == "processed_logprobs":
from fastdeploy.model_executor.layers.sample.ops import (
apply_penalty_multi_scores,
)
for proc in sampling_metadata.logits_processors or []:
logits = proc.apply(logits)
logits = apply_penalty_multi_scores(
sampling_metadata.pre_token_ids,
sampling_metadata.prompt_ids,
sampling_metadata.prompt_lens,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
)
logprobs = F.log_softmax(logits, axis=-1)
else:
from fastdeploy.model_executor.layers.sample.ops import (
apply_penalty_multi_scores,
)
for proc in sampling_metadata.logits_processors or []:
logits = proc.apply(logits)
logits = apply_penalty_multi_scores(
sampling_metadata.pre_token_ids,
sampling_metadata.prompt_ids,
sampling_metadata.prompt_lens,
logits,
sampling_metadata.repetition_penalties,
sampling_metadata.frequency_penalties,
sampling_metadata.presence_penalties,
sampling_metadata.temperature,
sampling_metadata.bad_words_token_ids,
sampling_metadata.step_idx,
sampling_metadata.min_dec_lens,
sampling_metadata.eos_token_ids,
)
logprobs = logits
token_logprobs = paddle.take_along_axis(logprobs, token_ids, axis=-1)
return token_logprobs
def test_sampler_logprobs():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
logprobs_mode_list = ["raw_logprobs", "raw_logits", "processed_logprobs", "processed_logits"]
logits = _create_fake_logits(batch_size, vocab_size)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
for logprobs_mode in logprobs_mode_list:
sampler = Sampler(logprobs_mode=logprobs_mode)
sampler_output = sampler(logits.clone(), sampling_metadata)
baseline_logprobs = get_baseline_logprobs(
logits.clone(), sampling_metadata, logprobs_mode=logprobs_mode, token_ids=sampler_output.sampled_token_ids
)
logprobs = sampler_output.logprobs_tensors.logprobs
print(f"baseline_logprobs = {baseline_logprobs}")
print(f"logprobs = {logprobs}")
equal = paddle.allclose(baseline_logprobs, logprobs, atol=1e-03, rtol=1e-03).item()
print(f"logprobs_mode: {logprobs_mode} equal={equal}")
assert equal
if __name__ == "__main__":
test_sampler()
test_sampler_logprobs()