mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [feat] provide an interface for logits processors and a builtin LogitBiasLogitsProcessor * [chore] fix code style * [fix] add unit test & fix existing bugs * [feat] add engine/worker arg --logits-processors * [fix] redefine user args as logits_processors_args and fix some bugs * [fix] fix test_sampler * Update fastdeploy/model_executor/logits_processor/builtin.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * Update fastdeploy/model_executor/logits_processor/__init__.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * Update tests/model_executor/test_logits_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * [fix] fix typo * Update fastdeploy/engine/sampling_params.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> * [fix] fix bracelet * [chore] redefine logits processor interface: pass the entire share_inputs into LP, do not copy share_inputs and logits * [doc] add docs * [fix] fix logit bias processor not applied when decoding is too fast & add docs and tests * [fix] fix redundant code * [feat] skip apply() if no bias is specified --------- Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Dict, Optional
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.logits_processor import LogitsProcessor
|
|
|
|
|
|
@dataclass
|
|
class SamplingMetadata:
|
|
"""
|
|
metadata for sampling.
|
|
"""
|
|
|
|
temperature: paddle.Tensor
|
|
|
|
pre_token_ids: paddle.Tensor
|
|
eos_token_ids: paddle.Tensor
|
|
frequency_penalties: paddle.Tensor
|
|
presence_penalties: paddle.Tensor
|
|
repetition_penalties: paddle.Tensor
|
|
|
|
min_dec_lens: paddle.Tensor
|
|
|
|
bad_words_token_ids: paddle.Tensor
|
|
|
|
step_idx: paddle.Tensor
|
|
|
|
top_p: paddle.Tensor
|
|
top_k: Optional[paddle.Tensor] = None
|
|
top_k_list: Optional[list] = None
|
|
min_p: Optional[paddle.Tensor] = None
|
|
min_p_list: Optional[list] = None
|
|
seed: Optional[paddle.Tensor] = None
|
|
max_num_logprobs: Optional[int] = None
|
|
enable_early_stop: Optional[int] = False
|
|
stop_flags: Optional[paddle.Tensor] = None
|
|
prompt_ids: Optional[paddle.Tensor] = None
|
|
prompt_lens: Optional[paddle.Tensor] = None
|
|
temp_scaled_logprobs: Optional[paddle.Tensor] = None
|
|
top_p_normalized_logprobs: Optional[paddle.Tensor] = None
|
|
share_inputs: Optional[Dict[str, paddle.Tensor]] = None
|
|
logits_processors: Optional[list[LogitsProcessor]] = None
|
|
# Add for HPU post-processing
|
|
seq_lens_encoder: Optional[paddle.Tensor] = None
|
|
seq_lens_decoder: Optional[paddle.Tensor] = None
|