mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
163 lines
6.4 KiB
Python
163 lines
6.4 KiB
Python
"""
|
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
"""
|
|
redundant expert manger
|
|
"""
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddleformers.utils.log import logger
|
|
|
|
from .eplb import rebalance_experts
|
|
|
|
|
|
class RedundantExpertManger:
|
|
"""
|
|
RedundantExpertManger
|
|
"""
|
|
|
|
def __init__(self, n_routed_experts, num_hidden_layers,
|
|
redundant_experts_num, ep_size):
|
|
|
|
self.num_expert = n_routed_experts
|
|
self.redundant_experts_num = redundant_experts_num
|
|
self.num_hidden_layers = num_hidden_layers
|
|
|
|
self.num_replicas = self.num_expert + self.redundant_experts_num
|
|
self.num_nodes = max(ep_size // 8, 1)
|
|
self.num_gpus = ep_size
|
|
self.num_groups = 1
|
|
|
|
self.export_per_rank = self.num_replicas // ep_size
|
|
assert self.num_replicas % ep_size == 0, \
|
|
f"num_replicas must be divisible by ep_size, \
|
|
but got num_replicas = {self.num_replicas}, ep_size = {ep_size}"
|
|
|
|
self.model_ep_rank_to_expert_id_list = paddle.full(shape=[
|
|
self.num_hidden_layers,
|
|
self.num_expert + self.redundant_experts_num
|
|
],
|
|
fill_value=-1,
|
|
dtype="int32")
|
|
self.model_expert_id_to_ep_rank_array = paddle.full(shape=[
|
|
self.num_hidden_layers, self.num_expert,
|
|
self.redundant_experts_num + 1
|
|
],
|
|
fill_value=-1,
|
|
dtype="int32")
|
|
self.model_expert_in_rank_num_list = paddle.full(
|
|
shape=[self.num_hidden_layers, self.num_expert],
|
|
fill_value=0,
|
|
dtype="int32")
|
|
# self.model_ep_rank_to_expert_id_list = paddle.arange(
|
|
# self.num_expert + self.redundant_experts_num,
|
|
# dtype="int32").tile([self.num_hidden_layers, 1])
|
|
# self.model_expert_id_to_ep_rank_array = paddle.arange(
|
|
# self.num_expert,
|
|
# dtype="int32").reshape([self.num_expert, 1]).tile([self.num_hidden_layers, 1, 1])
|
|
# self.model_expert_in_rank_num_list = paddle.full(
|
|
# shape=[self.num_hidden_layers, self.num_expert],
|
|
# fill_value=1,
|
|
# dtype="int32")
|
|
|
|
self.model_tokens_per_expert_stats_list = paddle.ones(
|
|
shape=[self.num_hidden_layers, self.num_expert], dtype="int32")
|
|
|
|
rank_expert_list, \
|
|
logical_to_physical_map, \
|
|
expert_count = rebalance_experts(
|
|
self.model_tokens_per_expert_stats_list.cpu().numpy(),
|
|
self.num_replicas,
|
|
self.num_groups,
|
|
self.num_nodes,
|
|
self.num_gpus)
|
|
|
|
self.update_expert_rank_table(rank_expert_list,
|
|
logical_to_physical_map, expert_count,
|
|
False)
|
|
|
|
logger.info(
|
|
f"moe experts table manager init successfully, ep_size {ep_size} \
|
|
num_replicas {self.num_replicas} export_per_rank {self.export_per_rank}"
|
|
)
|
|
|
|
def get_ep_rank_to_expert_id_list_by_layer(self, layer_id):
|
|
"""
|
|
get_ep_rank_to_expert_id_list_by_layer
|
|
"""
|
|
return self.model_ep_rank_to_expert_id_list[layer_id], \
|
|
self.model_expert_id_to_ep_rank_array[layer_id], \
|
|
self.model_expert_in_rank_num_list[layer_id], \
|
|
self.model_tokens_per_expert_stats_list[layer_id]
|
|
|
|
def get_ep_rank_to_expert_id_list(self, layer_id):
|
|
"""
|
|
get_ep_rank_to_expert_id_list
|
|
"""
|
|
return self.model_ep_rank_to_expert_id_list[layer_id], \
|
|
self.model_expert_id_to_ep_rank_array[layer_id], \
|
|
self.model_expert_in_rank_num_list[layer_id], \
|
|
self.model_tokens_per_expert_stats_list[layer_id]
|
|
|
|
def get_expert_tokens_stats(self,
|
|
verbose: bool = False,
|
|
clear_stat: bool = False):
|
|
"""
|
|
get_per_expert_tokens_stats
|
|
"""
|
|
try:
|
|
if verbose:
|
|
return self.model_tokens_per_expert_stats_list.cpu().numpy(), \
|
|
self.model_expert_id_to_ep_rank_array.cpu().numpy(), \
|
|
self.model_ep_rank_to_expert_id_list.cpu().numpy(), \
|
|
self.model_expert_in_rank_num_list.cpu().numpy()
|
|
return self.model_tokens_per_expert_stats_list.cpu().numpy(
|
|
), None, None, None
|
|
finally:
|
|
if clear_stat:
|
|
self.model_tokens_per_expert_stats_list.zero_()
|
|
|
|
def get_expert_id_to_ep_rank_array(self):
|
|
"""
|
|
get_expert_id_to_ep_rank_array
|
|
"""
|
|
return self.model_expert_id_to_ep_rank_array.cpu().numpy()
|
|
|
|
def update_expert_rank_table(self,
|
|
rank_expert_list: np.ndarray,
|
|
logical_to_physical_map: np.ndarray,
|
|
expert_count: np.ndarray,
|
|
clear_stat: bool = True):
|
|
"""
|
|
update_expert_rank_table
|
|
"""
|
|
#update model info
|
|
self.model_ep_rank_to_expert_id_list.copy_(
|
|
paddle.to_tensor(rank_expert_list), True)
|
|
self.model_expert_id_to_ep_rank_array.fill_(-1)
|
|
self.model_expert_id_to_ep_rank_array[:, :, :logical_to_physical_map.shape[-1]] = \
|
|
paddle.to_tensor(logical_to_physical_map)
|
|
self.model_expert_in_rank_num_list.copy_(
|
|
paddle.to_tensor(expert_count), True)
|
|
|
|
# reset
|
|
if clear_stat:
|
|
self.model_tokens_per_expert_stats_list.zero_()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(RedundantExpertManger(64, 2, 8, 8).model_expert_id_to_ep_rank_array)
|