mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-15 13:10:55 +08:00
168 lines
6.7 KiB
Python
168 lines
6.7 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import copy
|
|
|
|
from fastdeploy.config import ModelConfig
|
|
|
|
from .dfnrope.modeling import DFNRopeVisionTransformerConfig
|
|
|
|
__all__ = [
|
|
"Ernie4_5_VLMoeConfig",
|
|
]
|
|
|
|
|
|
class Ernie4_5_VLMoeConfig(ModelConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`~ErnieModel`]. It is used to instantiate an Ernie
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the Ernie-7B.
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the Ernie model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`~ErnieModel`] or [`~TFErnieModel`].
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
Example:
|
|
```python
|
|
>>> from paddleformers.transformer import ErnieModel, ErnieConfig
|
|
|
|
>>> # Initializing a Ernie ernie-7b style configuration
|
|
>>> configuration = ErnieConfig()
|
|
|
|
>>> # Initializing a model from the ernie-7b style configuration
|
|
>>> model = ErnieModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "erniemoevl"
|
|
attribute_map = {
|
|
"n_positions": "max_position_embeddings",
|
|
"n_embd": "hidden_size",
|
|
"n_layer": "num_hidden_layers",
|
|
"n_head": "num_attention_heads",
|
|
"n_inner": "intermediate_size",
|
|
"activation_function": "hidden_act",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vision_config=None,
|
|
im_patch_id=None,
|
|
pixel_hidden_size=None, # None for fuyu
|
|
modality_detach=False,
|
|
temporal_conv_size=2,
|
|
spatial_conv_size=2,
|
|
mm_vocab_size=0, # vocab for mm specialtokens
|
|
max_text_id=None,
|
|
use_temporal_conv=True,
|
|
moe_use_size_all2all=False,
|
|
moe_num_attn_experts=False,
|
|
moe_dense_experts_token_type_id: int = 3,
|
|
moe_use_hard_gate: bool = True,
|
|
moe_fuse_experts: bool = False,
|
|
moe_use_token_type_bias: bool = False,
|
|
disable_ffn_model_parallel=False,
|
|
fuse_attn_ffn=True,
|
|
rope_3d=True,
|
|
freq_allocation=20,
|
|
using_precision_check=False,
|
|
use_recompute_resampler=False,
|
|
resampler_fuse_rms_norm=False,
|
|
moe_layer_feed_fake_token=False,
|
|
moe_num_experts=0,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.vision_config = DFNRopeVisionTransformerConfig(
|
|
**vision_config) if vision_config else None
|
|
self.im_patch_id = im_patch_id
|
|
self.pixel_hidden_size = pixel_hidden_size
|
|
self.modality_detach = modality_detach
|
|
self.temporal_conv_size = temporal_conv_size
|
|
self.spatial_conv_size = spatial_conv_size
|
|
self.mm_vocab_size = mm_vocab_size
|
|
self.max_text_id = max_text_id
|
|
self.use_temporal_conv = use_temporal_conv
|
|
|
|
self.moe_use_size_all2all = moe_use_size_all2all
|
|
self.moe_num_attn_experts = moe_num_attn_experts
|
|
self.moe_dense_experts_token_type_id = moe_dense_experts_token_type_id
|
|
self.moe_use_hard_gate = moe_use_hard_gate
|
|
self.moe_fuse_experts = moe_fuse_experts
|
|
self.moe_use_token_type_bias = moe_use_token_type_bias
|
|
self.disable_ffn_model_parallel = disable_ffn_model_parallel
|
|
|
|
self.fuse_attn_ffn = fuse_attn_ffn
|
|
self.rope_3d = rope_3d
|
|
self.freq_allocation = freq_allocation
|
|
self.using_precision_check = using_precision_check
|
|
self.use_recompute_resampler = use_recompute_resampler
|
|
self.resampler_fuse_rms_norm = resampler_fuse_rms_norm
|
|
self.moe_layer_feed_fake_token = moe_layer_feed_fake_token
|
|
self.moe_num_experts = moe_num_experts
|
|
|
|
@property
|
|
def multimodel_experts(self) -> bool:
|
|
"""是否有多种类型的experts."""
|
|
return isinstance(self.moe_num_experts,
|
|
(tuple, list)) and len(self.moe_num_experts) > 1
|
|
|
|
@property
|
|
def use_moe(self) -> bool:
|
|
"""
|
|
Check if model is using MoE architecture.
|
|
|
|
Returns:
|
|
bool: True if moe_num_experts > 0, False otherwise
|
|
"""
|
|
return sum(
|
|
self.moe_num_experts
|
|
) > 0 if self.multimodel_experts else self.moe_num_experts > 0
|
|
|
|
def to_dict(self, saving_file=False):
|
|
"""to_dict"""
|
|
output = copy.deepcopy(self.__dict__)
|
|
if self.vision_config:
|
|
output["vision_config"] = (
|
|
self.vision_config.to_diff_dict() if isinstance(
|
|
self.vision_config,
|
|
(DFNRopeVisionTransformerConfig)) else self.vision_config)
|
|
|
|
output["model_type"] = self.__class__.model_type
|
|
return output
|