Files
FastDeploy/fastdeploy/model_executor/models/ernie4_5_vl/configuration.py
2025-06-29 23:29:37 +00:00

168 lines
6.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import copy
from fastdeploy.config import ModelConfig
from .dfnrope.modeling import DFNRopeVisionTransformerConfig
__all__ = [
"Ernie4_5_VLMoeConfig",
]
class Ernie4_5_VLMoeConfig(ModelConfig):
r"""
This is the configuration class to store the configuration of a [`~ErnieModel`]. It is used to instantiate an Ernie
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Ernie-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Ernie model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~ErnieModel`] or [`~TFErnieModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
Example:
```python
>>> from paddleformers.transformer import ErnieModel, ErnieConfig
>>> # Initializing a Ernie ernie-7b style configuration
>>> configuration = ErnieConfig()
>>> # Initializing a model from the ernie-7b style configuration
>>> model = ErnieModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "erniemoevl"
attribute_map = {
"n_positions": "max_position_embeddings",
"n_embd": "hidden_size",
"n_layer": "num_hidden_layers",
"n_head": "num_attention_heads",
"n_inner": "intermediate_size",
"activation_function": "hidden_act",
}
def __init__(
self,
vision_config=None,
im_patch_id=None,
pixel_hidden_size=None, # None for fuyu
modality_detach=False,
temporal_conv_size=2,
spatial_conv_size=2,
mm_vocab_size=0, # vocab for mm specialtokens
max_text_id=None,
use_temporal_conv=True,
moe_use_size_all2all=False,
moe_num_attn_experts=False,
moe_dense_experts_token_type_id: int = 3,
moe_use_hard_gate: bool = True,
moe_fuse_experts: bool = False,
moe_use_token_type_bias: bool = False,
disable_ffn_model_parallel=False,
fuse_attn_ffn=True,
rope_3d=True,
freq_allocation=20,
using_precision_check=False,
use_recompute_resampler=False,
resampler_fuse_rms_norm=False,
moe_layer_feed_fake_token=False,
moe_num_experts=0,
**kwargs,
):
super().__init__(**kwargs)
self.vision_config = DFNRopeVisionTransformerConfig(
**vision_config) if vision_config else None
self.im_patch_id = im_patch_id
self.pixel_hidden_size = pixel_hidden_size
self.modality_detach = modality_detach
self.temporal_conv_size = temporal_conv_size
self.spatial_conv_size = spatial_conv_size
self.mm_vocab_size = mm_vocab_size
self.max_text_id = max_text_id
self.use_temporal_conv = use_temporal_conv
self.moe_use_size_all2all = moe_use_size_all2all
self.moe_num_attn_experts = moe_num_attn_experts
self.moe_dense_experts_token_type_id = moe_dense_experts_token_type_id
self.moe_use_hard_gate = moe_use_hard_gate
self.moe_fuse_experts = moe_fuse_experts
self.moe_use_token_type_bias = moe_use_token_type_bias
self.disable_ffn_model_parallel = disable_ffn_model_parallel
self.fuse_attn_ffn = fuse_attn_ffn
self.rope_3d = rope_3d
self.freq_allocation = freq_allocation
self.using_precision_check = using_precision_check
self.use_recompute_resampler = use_recompute_resampler
self.resampler_fuse_rms_norm = resampler_fuse_rms_norm
self.moe_layer_feed_fake_token = moe_layer_feed_fake_token
self.moe_num_experts = moe_num_experts
@property
def multimodel_experts(self) -> bool:
"""是否有多种类型的experts."""
return isinstance(self.moe_num_experts,
(tuple, list)) and len(self.moe_num_experts) > 1
@property
def use_moe(self) -> bool:
"""
Check if model is using MoE architecture.
Returns:
bool: True if moe_num_experts > 0, False otherwise
"""
return sum(
self.moe_num_experts
) > 0 if self.multimodel_experts else self.moe_num_experts > 0
def to_dict(self, saving_file=False):
"""to_dict"""
output = copy.deepcopy(self.__dict__)
if self.vision_config:
output["vision_config"] = (
self.vision_config.to_diff_dict() if isinstance(
self.vision_config,
(DFNRopeVisionTransformerConfig)) else self.vision_config)
output["model_type"] = self.__class__.model_type
return output