Files
FastDeploy/fastdeploy/inter_communicator/ipc_signal.py
2025-07-19 23:19:27 +08:00

94 lines
3.3 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from multiprocessing.shared_memory import SharedMemory
import numpy as np
def shared_memory_exists(name: str) -> bool:
"""Check if a shared memory block with the given name exists.
Args:
name: The unique identifier of the shared memory block.
Returns:
True if the shared memory exists, False otherwise.
"""
try:
shm = SharedMemory(name=name, create=False)
shm.close()
return True
except FileNotFoundError:
return False
except Exception as e:
print(f"Unexpected error: {e}")
return False
class IPCSignal:
"""A shared memory wrapper for inter-process communication using numpy arrays.
Allows creating or connecting to existing shared memory blocks and synchronizing
numpy array data between processes.
Attributes:
shm: The underlying SharedMemory object.
value: Numpy array interface to the shared memory buffer.
"""
def __init__(
self,
name: str,
array: np.ndarray,
dtype: np.dtype,
suffix: int = None,
create: bool = True,
) -> None:
"""Initialize or connect to a shared memory block.
Args:
name: Unique identifier for the shared memory block.
array: Numpy array template defining shape and data type.
dtype: Data type of the array (must match array.dtype).
suffix: Suffix number that will be appended to the name.
create: If True, creates new memory block; otherwise connects to existing.
Raises:
AssertionError: If create=True but memory already exists, or dtype mismatch.
"""
assert isinstance(array, np.ndarray), "Input must be a numpy array"
assert dtype == array.dtype, "Specified dtype must match array dtype"
# Set a suffix for name to avoid name conflict while there are multiple engine launched
if suffix is not None:
name = name + f".{suffix}"
if create:
assert not shared_memory_exists(name), f"ShareMemory: {name} already exists"
self.shm = SharedMemory(create=True, size=array.nbytes, name=name)
self.value: np.ndarray = np.ndarray(array.shape, dtype=array.dtype, buffer=self.shm.buf)
self.value[:] = array # Initialize with input array data
else:
self.shm = SharedMemory(name=name)
self.value: np.ndarray = np.ndarray(array.shape, dtype=array.dtype, buffer=self.shm.buf)
def clear(self) -> None:
"""Release system resources and unlink the shared memory block."""
if shared_memory_exists(self.shm.name):
self.shm.close()
self.shm.unlink()