Files
FastDeploy/fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
Wang Xinyu 91a1c72f98 [CVCUDA] PP-OCR detector preprocessor integrate CV-CUDA (#1382)
* move manager initialized_ flag to ppcls

* update dbdetector preprocess api

* declare processor op

* ppocr detector preprocessor support cvcuda

* move cvcuda op to class member

* ppcls use manager register api

* refactor det preprocessor init api

* add set preprocessor api

* add create processor macro

* new processor call api

* ppcls preprocessor init resize on cpu

* ppocr detector preprocessor set normalize api

* revert ppcls pybind

* remove dbdetector set preprocessor

* refine dbdetector preprocessor includes

* remove mean std in py constructor

* add comments

* update comment

* Update __init__.py
2023-02-22 19:39:11 +08:00

307 lines
14 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <pybind11/stl.h>
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPPOCRModel(pybind11::module& m) {
m.def("sort_boxes", [](std::vector<std::array<int, 8>>& boxes) {
vision::ocr::SortBoxes(&boxes);
return boxes;
});
// DBDetector
pybind11::class_<vision::ocr::DBDetectorPreprocessor>(
m, "DBDetectorPreprocessor")
.def(pybind11::init<>())
.def_property("max_side_len",
&vision::ocr::DBDetectorPreprocessor::GetMaxSideLen,
&vision::ocr::DBDetectorPreprocessor::SetMaxSideLen)
.def("set_normalize",
[](vision::ocr::DBDetectorPreprocessor& self,
const std::vector<float>& mean, const std::vector<float>& std,
bool is_scale) { self.SetNormalize(mean, std, is_scale); })
.def("run", [](vision::ocr::DBDetectorPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
self.Run(&images, &outputs);
auto batch_det_img_info = self.GetBatchImgInfo();
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return std::make_pair(outputs, *batch_det_img_info);
});
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(
m, "DBDetectorPostprocessor")
.def(pybind11::init<>())
.def_property("det_db_thresh",
&vision::ocr::DBDetectorPostprocessor::GetDetDBThresh,
&vision::ocr::DBDetectorPostprocessor::SetDetDBThresh)
.def_property("det_db_box_thresh",
&vision::ocr::DBDetectorPostprocessor::GetDetDBBoxThresh,
&vision::ocr::DBDetectorPostprocessor::SetDetDBBoxThresh)
.def_property("det_db_unclip_ratio",
&vision::ocr::DBDetectorPostprocessor::GetDetDBUnclipRatio,
&vision::ocr::DBDetectorPostprocessor::SetDetDBUnclipRatio)
.def_property("det_db_score_mode",
&vision::ocr::DBDetectorPostprocessor::GetDetDBScoreMode,
&vision::ocr::DBDetectorPostprocessor::SetDetDBScoreMode)
.def_property("use_dilation",
&vision::ocr::DBDetectorPostprocessor::GetUseDilation,
&vision::ocr::DBDetectorPostprocessor::SetUseDilation)
.def("run",
[](vision::ocr::DBDetectorPostprocessor& self,
std::vector<FDTensor>& inputs,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> results;
if (!self.Run(inputs, &results, batch_det_img_info)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"DBDetectorPostprocessor.");
}
return results;
})
.def("run",
[](vision::ocr::DBDetectorPostprocessor& self,
std::vector<pybind11::array>& input_array,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, batch_det_img_info)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"DBDetectorPostprocessor.");
}
return results;
});
pybind11::class_<vision::ocr::DBDetector, FastDeployModel>(m, "DBDetector")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::DBDetector::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::DBDetector::GetPostprocessor)
.def("predict",
[](vision::ocr::DBDetector& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
std::vector<std::array<int, 8>> boxes_result;
self.Predict(mat, &boxes_result);
return boxes_result;
})
.def("batch_predict", [](vision::ocr::DBDetector& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
std::vector<std::vector<std::array<int, 8>>> det_results;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
self.BatchPredict(images, &det_results);
return det_results;
});
// Classifier
pybind11::class_<vision::ocr::ClassifierPreprocessor>(
m, "ClassifierPreprocessor")
.def(pybind11::init<>())
.def_property("cls_image_shape",
&vision::ocr::ClassifierPreprocessor::GetClsImageShape,
&vision::ocr::ClassifierPreprocessor::SetClsImageShape)
.def_property("mean", &vision::ocr::ClassifierPreprocessor::GetMean,
&vision::ocr::ClassifierPreprocessor::SetMean)
.def_property("scale", &vision::ocr::ClassifierPreprocessor::GetScale,
&vision::ocr::ClassifierPreprocessor::SetScale)
.def_property("is_scale",
&vision::ocr::ClassifierPreprocessor::GetIsScale,
&vision::ocr::ClassifierPreprocessor::SetIsScale)
.def("run", [](vision::ocr::ClassifierPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in ClassifierPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::ocr::ClassifierPostprocessor>(
m, "ClassifierPostprocessor")
.def(pybind11::init<>())
.def_property("cls_thresh",
&vision::ocr::ClassifierPostprocessor::GetClsThresh,
&vision::ocr::ClassifierPostprocessor::SetClsThresh)
.def("run",
[](vision::ocr::ClassifierPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<int> cls_labels;
std::vector<float> cls_scores;
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"ClassifierPostprocessor.");
}
return std::make_pair(cls_labels, cls_scores);
})
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<int> cls_labels;
std::vector<float> cls_scores;
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"ClassifierPostprocessor.");
}
return std::make_pair(cls_labels, cls_scores);
});
pybind11::class_<vision::ocr::Classifier, FastDeployModel>(m, "Classifier")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::Classifier::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::Classifier::GetPostprocessor)
.def("predict",
[](vision::ocr::Classifier& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
int32_t cls_label;
float cls_score;
self.Predict(mat, &cls_label, &cls_score);
return std::make_pair(cls_label, cls_score);
})
.def("batch_predict", [](vision::ocr::Classifier& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
std::vector<int32_t> cls_labels;
std::vector<float> cls_scores;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
self.BatchPredict(images, &cls_labels, &cls_scores);
return std::make_pair(cls_labels, cls_scores);
});
// Recognizer
pybind11::class_<vision::ocr::RecognizerPreprocessor>(
m, "RecognizerPreprocessor")
.def(pybind11::init<>())
.def_property("static_shape_infer",
&vision::ocr::RecognizerPreprocessor::GetStaticShapeInfer,
&vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer)
.def_property("rec_image_shape",
&vision::ocr::RecognizerPreprocessor::GetRecImageShape,
&vision::ocr::RecognizerPreprocessor::SetRecImageShape)
.def_property("mean", &vision::ocr::RecognizerPreprocessor::GetMean,
&vision::ocr::RecognizerPreprocessor::SetMean)
.def_property("scale", &vision::ocr::RecognizerPreprocessor::GetScale,
&vision::ocr::RecognizerPreprocessor::SetScale)
.def_property("is_scale",
&vision::ocr::RecognizerPreprocessor::GetIsScale,
&vision::ocr::RecognizerPreprocessor::SetIsScale)
.def("run", [](vision::ocr::RecognizerPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in RecognizerPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::ocr::RecognizerPostprocessor>(
m, "RecognizerPostprocessor")
.def(pybind11::init<std::string>())
.def("run",
[](vision::ocr::RecognizerPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<std::string> texts;
std::vector<float> rec_scores;
if (!self.Run(inputs, &texts, &rec_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"RecognizerPostprocessor.");
}
return std::make_pair(texts, rec_scores);
})
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<std::string> texts;
std::vector<float> rec_scores;
if (!self.Run(inputs, &texts, &rec_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"RecognizerPostprocessor.");
}
return std::make_pair(texts, rec_scores);
});
pybind11::class_<vision::ocr::Recognizer, FastDeployModel>(m, "Recognizer")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::Recognizer::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::Recognizer::GetPostprocessor)
.def("predict",
[](vision::ocr::Recognizer& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
std::string text;
float rec_score;
self.Predict(mat, &text, &rec_score);
return std::make_pair(text, rec_score);
})
.def("batch_predict", [](vision::ocr::Recognizer& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
std::vector<std::string> texts;
std::vector<float> rec_scores;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
self.BatchPredict(images, &texts, &rec_scores);
return std::make_pair(texts, rec_scores);
});
}
} // namespace fastdeploy