Files
FastDeploy/fastdeploy/vision/ocr/ppocr/dbdetector.cc
Wang Xinyu 91a1c72f98 [CVCUDA] PP-OCR detector preprocessor integrate CV-CUDA (#1382)
* move manager initialized_ flag to ppcls

* update dbdetector preprocess api

* declare processor op

* ppocr detector preprocessor support cvcuda

* move cvcuda op to class member

* ppcls use manager register api

* refactor det preprocessor init api

* add set preprocessor api

* add create processor macro

* new processor call api

* ppcls preprocessor init resize on cpu

* ppocr detector preprocessor set normalize api

* revert ppcls pybind

* remove dbdetector set preprocessor

* refine dbdetector preprocessor includes

* remove mean std in py constructor

* add comments

* update comment

* Update __init__.py
2023-02-22 19:39:11 +08:00

102 lines
3.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/dbdetector.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
DBDetector::DBDetector() {}
DBDetector::DBDetector(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO,
Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_kunlunxin_backends = {Backend::LITE};
valid_ascend_backends = {Backend::LITE};
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
// Init
bool DBDetector::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
std::unique_ptr<DBDetector> DBDetector::Clone() const {
std::unique_ptr<DBDetector> clone_model =
utils::make_unique<DBDetector>(DBDetector(*this));
clone_model->SetRuntime(clone_model->CloneRuntime());
return clone_model;
}
bool DBDetector::Predict(const cv::Mat& img,
std::vector<std::array<int, 8>>* boxes_result) {
std::vector<std::vector<std::array<int, 8>>> det_results;
if (!BatchPredict({img}, &det_results)) {
return false;
}
*boxes_result = std::move(det_results[0]);
return true;
}
bool DBDetector::BatchPredict(
const std::vector<cv::Mat>& images,
std::vector<std::vector<std::array<int, 8>>>* det_results) {
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
auto batch_det_img_info = preprocessor_.GetBatchImgInfo();
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, det_results,
*batch_det_img_info)) {
FDERROR << "Failed to postprocess the inference cls_results by runtime."
<< std::endl;
return false;
}
return true;
}
} // namespace ocr
} // namespace vision
} // namespace fastdeploy