mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* move manager initialized_ flag to ppcls * update dbdetector preprocess api * declare processor op * ppocr detector preprocessor support cvcuda * move cvcuda op to class member * ppcls use manager register api * refactor det preprocessor init api * add set preprocessor api * add create processor macro * new processor call api * ppcls preprocessor init resize on cpu * ppocr detector preprocessor set normalize api * revert ppcls pybind * remove dbdetector set preprocessor * refine dbdetector preprocessor includes * remove mean std in py constructor * add comments * update comment * Update __init__.py
83 lines
2.9 KiB
C++
83 lines
2.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/common/processors/mat_batch.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
#ifdef WITH_GPU
|
|
void FDMatBatch::SetStream(cudaStream_t s) {
|
|
stream = s;
|
|
for (size_t i = 0; i < mats->size(); ++i) {
|
|
(*mats)[i].SetStream(s);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
FDTensor* FDMatBatch::Tensor() {
|
|
if (has_batched_tensor) {
|
|
return fd_tensor.get();
|
|
}
|
|
FDASSERT(CheckShapeConsistency(mats), "Mats shapes are not consistent.")
|
|
// Each mat has its own tensor,
|
|
// to get a batched tensor, we need copy these tensors to a batched tensor
|
|
FDTensor* src = (*mats)[0].Tensor();
|
|
auto new_shape = src->Shape();
|
|
new_shape.insert(new_shape.begin(), mats->size());
|
|
input_cache->Resize(new_shape, src->Dtype(), "batch_input_cache", device);
|
|
for (size_t i = 0; i < mats->size(); ++i) {
|
|
FDASSERT(device == (*mats)[i].Tensor()->device,
|
|
"Mats and MatBatch are not on the same device");
|
|
uint8_t* p = reinterpret_cast<uint8_t*>(input_cache->Data());
|
|
int num_bytes = (*mats)[i].Tensor()->Nbytes();
|
|
FDTensor::CopyBuffer(p + i * num_bytes, (*mats)[i].Tensor()->Data(),
|
|
num_bytes, device, false);
|
|
}
|
|
SetTensor(input_cache);
|
|
return fd_tensor.get();
|
|
}
|
|
|
|
void FDMatBatch::SetTensor(FDTensor* tensor) {
|
|
fd_tensor->SetExternalData(tensor->Shape(), tensor->Dtype(), tensor->Data(),
|
|
tensor->device, tensor->device_id);
|
|
has_batched_tensor = true;
|
|
}
|
|
|
|
FDTensor* CreateCachedGpuInputTensor(FDMatBatch* mat_batch) {
|
|
#ifdef WITH_GPU
|
|
auto mats = mat_batch->mats;
|
|
FDASSERT(CheckShapeConsistency(mats), "Mats shapes are not consistent.")
|
|
FDTensor* src = (*mats)[0].Tensor();
|
|
if (mat_batch->device == Device::GPU) {
|
|
return mat_batch->Tensor();
|
|
} else if (mat_batch->device == Device::CPU) {
|
|
// Mats on CPU, we need copy them to GPU and then get a batched GPU tensor
|
|
for (size_t i = 0; i < mats->size(); ++i) {
|
|
FDTensor* tensor = CreateCachedGpuInputTensor(&(*mats)[i]);
|
|
(*mats)[i].SetTensor(tensor);
|
|
}
|
|
mat_batch->device = Device::GPU;
|
|
return mat_batch->Tensor();
|
|
} else {
|
|
FDASSERT(false, "FDMat is on unsupported device: %d", src->device);
|
|
}
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compile with WITH_GPU.");
|
|
#endif
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|