Files
FastDeploy/fastdeploy/vision/classification/ppcls/preprocessor.h
Wang Xinyu 91a1c72f98 [CVCUDA] PP-OCR detector preprocessor integrate CV-CUDA (#1382)
* move manager initialized_ flag to ppcls

* update dbdetector preprocess api

* declare processor op

* ppocr detector preprocessor support cvcuda

* move cvcuda op to class member

* ppcls use manager register api

* refactor det preprocessor init api

* add set preprocessor api

* add create processor macro

* new processor call api

* ppcls preprocessor init resize on cpu

* ppocr detector preprocessor set normalize api

* revert ppcls pybind

* remove dbdetector set preprocessor

* refine dbdetector preprocessor includes

* remove mean std in py constructor

* add comments

* update comment

* Update __init__.py
2023-02-22 19:39:11 +08:00

72 lines
2.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/manager.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief Preprocessor object for PaddleClas serials model.
*/
class FASTDEPLOY_DECL PaddleClasPreprocessor : public ProcessorManager {
public:
/** \brief Create a preprocessor instance for PaddleClas serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
*/
explicit PaddleClasPreprocessor(const std::string& config_file);
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] image_batch The input image batch
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
virtual bool Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs);
/// This function will disable normalize in preprocessing step.
void DisableNormalize();
/// This function will disable hwc2chw in preprocessing step.
void DisablePermute();
/** \brief When the initial operator is Resize, and input image size is large,
* maybe it's better to run resize on CPU, because the HostToDevice memcpy
* is time consuming. Set this true to run the initial resize on CPU.
*
* \param[in] v ture or false
*/
void InitialResizeOnCpu(bool v) { initial_resize_on_cpu_ = v; }
private:
bool BuildPreprocessPipelineFromConfig();
bool initialized_ = false;
std::vector<std::shared_ptr<Processor>> processors_;
// for recording the switch of hwc2chw
bool disable_permute_ = false;
// for recording the switch of normalize
bool disable_normalize_ = false;
// read config file
std::string config_file_;
bool initial_resize_on_cpu_ = false;
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy