mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * fix build problem Signed-off-by: ChaoII <849453582@qq.com> * fix code style Signed-off-by: ChaoII <849453582@qq.com> * modify according to review suggestions Signed-off-by: ChaoII <849453582@qq.com> * modify vsr trt example Signed-off-by: ChaoII <849453582@qq.com> * update sr directory * fix BindPPSR * add doxygen comment * add sr unit test * update model file url Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
299 lines
9.3 KiB
C++
299 lines
9.3 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void CpuInfer(const std::string& model_dir,
|
|
const std::string& video_file, int frame_num) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto model = fastdeploy::vision::sr::PPMSVSR(model_file, params_file);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
|
|
// b and n is dependent on export model shape
|
|
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
|
cv::VideoCapture capture;
|
|
// change your save video path
|
|
std::string video_out_name = "output.mp4";
|
|
capture.open(video_file);
|
|
if (!capture.isOpened())
|
|
{
|
|
std::cout<<"can not open video "<<std::endl;
|
|
return;
|
|
}
|
|
// Get Video info :fps, frame count
|
|
// it used 4.x version of opencv below
|
|
// notice your opencv version and method of api.
|
|
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
|
|
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
|
|
// Set fixed size for output frame, only for msvsr model
|
|
int out_width = 1280;
|
|
int out_height = 720;
|
|
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
|
|
|
|
// Create VideoWriter for output
|
|
cv::VideoWriter video_out;
|
|
std::string video_out_path("./");
|
|
video_out_path += video_out_name;
|
|
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
|
|
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
|
|
if (!video_out.isOpened())
|
|
{
|
|
std::cout << "create video writer failed!" << std::endl;
|
|
return;
|
|
}
|
|
// Capture all frames and do inference
|
|
cv::Mat frame;
|
|
int frame_id = 0;
|
|
bool reach_end = false;
|
|
while (capture.isOpened())
|
|
{
|
|
std::vector<cv::Mat> imgs;
|
|
for (int i = 0; i < frame_num; i++)
|
|
{
|
|
capture.read(frame);
|
|
if (!frame.empty())
|
|
{
|
|
imgs.push_back(frame);
|
|
}else{
|
|
reach_end = true;
|
|
}
|
|
}
|
|
if (reach_end)
|
|
{
|
|
break;
|
|
}
|
|
std::vector<cv::Mat> results;
|
|
model.Predict(imgs, results);
|
|
for (auto &item : results)
|
|
{
|
|
// cv::imshow("13",item);
|
|
// cv::waitKey(30);
|
|
video_out.write(item);
|
|
std::cout << "Processing frame: "<< frame_id << std::endl;
|
|
frame_id += 1;
|
|
}
|
|
}
|
|
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
|
|
capture.release();
|
|
video_out.release();
|
|
}
|
|
|
|
void GpuInfer(const std::string& model_dir,
|
|
const std::string& video_file, int frame_num) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
|
|
auto option = fastdeploy::RuntimeOption();
|
|
// use paddle-TRT
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
option.EnablePaddleToTrt();
|
|
auto model = fastdeploy::vision::sr::PPMSVSR(
|
|
model_file, params_file, option);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
|
|
// b and n is dependent on export model shape
|
|
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
|
cv::VideoCapture capture;
|
|
// change your save video path
|
|
std::string video_out_name = "output.mp4";
|
|
capture.open(video_file);
|
|
if (!capture.isOpened())
|
|
{
|
|
std::cout<<"can not open video "<<std::endl;
|
|
return;
|
|
}
|
|
// Get Video info :fps, frame count
|
|
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
|
|
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
|
|
// Set fixed size for output frame, only for msvsr model
|
|
int out_width = 1280;
|
|
int out_height = 720;
|
|
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
|
|
|
|
// Create VideoWriter for output
|
|
cv::VideoWriter video_out;
|
|
std::string video_out_path("./");
|
|
video_out_path += video_out_name;
|
|
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
|
|
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
|
|
if (!video_out.isOpened())
|
|
{
|
|
std::cout << "create video writer failed!" << std::endl;
|
|
return;
|
|
}
|
|
// Capture all frames and do inference
|
|
cv::Mat frame;
|
|
int frame_id = 0;
|
|
bool reach_end = false;
|
|
while (capture.isOpened())
|
|
{
|
|
std::vector<cv::Mat> imgs;
|
|
for (int i = 0; i < frame_num; i++)
|
|
{
|
|
capture.read(frame);
|
|
if (!frame.empty())
|
|
{
|
|
imgs.push_back(frame);
|
|
}else{
|
|
reach_end = true;
|
|
}
|
|
}
|
|
if (reach_end)
|
|
{
|
|
break;
|
|
}
|
|
std::vector<cv::Mat> results;
|
|
model.Predict(imgs, results);
|
|
for (auto &item : results)
|
|
{
|
|
// cv::imshow("13",item);
|
|
// cv::waitKey(30);
|
|
video_out.write(item);
|
|
std::cout << "Processing frame: "<< frame_id << std::endl;
|
|
frame_id += 1;
|
|
}
|
|
}
|
|
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
|
|
capture.release();
|
|
video_out.release();
|
|
}
|
|
|
|
void TrtInfer(const std::string& model_dir,
|
|
const std::string& video_file, int frame_num) {
|
|
auto model_file = model_dir + sep + "model.pdmodel";
|
|
auto params_file = model_dir + sep + "model.pdiparams";
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
auto model = fastdeploy::vision::sr::PPMSVSR(
|
|
model_file, params_file, option);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
// note: input/output shape is [b, n, c, h, w] (n = frame_nums; b=1(default))
|
|
// b and n is dependent on export model shape
|
|
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
|
cv::VideoCapture capture;
|
|
// change your save video path
|
|
std::string video_out_name = "output.mp4";
|
|
capture.open(video_file);
|
|
if (!capture.isOpened())
|
|
{
|
|
std::cout<<"can not open video "<<std::endl;
|
|
return;
|
|
}
|
|
// Get Video info :fps, frame count
|
|
int video_fps = static_cast<int>(capture.get(cv::CAP_PROP_FPS));
|
|
int video_frame_count = static_cast<int>(capture.get(cv::CAP_PROP_FRAME_COUNT));
|
|
// Set fixed size for output frame, only for msvsr model
|
|
//Note that the resolution between the size and the original input is consistent when the model is exported,
|
|
// for example: [1,2,3,180,320], after 4x super separation [1,2,3,720,1080].
|
|
//Therefore, it is very important to derive the model
|
|
int out_width = 1280;
|
|
int out_height = 720;
|
|
std::cout << "fps: " << video_fps << "\tframe_count: " << video_frame_count << std::endl;
|
|
|
|
// Create VideoWriter for output
|
|
cv::VideoWriter video_out;
|
|
std::string video_out_path("./");
|
|
video_out_path += video_out_name;
|
|
int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
|
|
video_out.open(video_out_path, fcc, video_fps, cv::Size(out_width, out_height), true);
|
|
if (!video_out.isOpened())
|
|
{
|
|
std::cout << "create video writer failed!" << std::endl;
|
|
return;
|
|
}
|
|
// Capture all frames and do inference
|
|
cv::Mat frame;
|
|
int frame_id = 0;
|
|
bool reach_end = false;
|
|
while (capture.isOpened())
|
|
{
|
|
std::vector<cv::Mat> imgs;
|
|
for (int i = 0; i < frame_num; i++)
|
|
{
|
|
capture.read(frame);
|
|
if (!frame.empty())
|
|
{
|
|
imgs.push_back(frame);
|
|
}else{
|
|
reach_end = true;
|
|
}
|
|
}
|
|
if (reach_end)
|
|
{
|
|
break;
|
|
}
|
|
std::vector<cv::Mat> results;
|
|
model.Predict(imgs, results);
|
|
for (auto &item : results)
|
|
{
|
|
// cv::imshow("13",item);
|
|
// cv::waitKey(30);
|
|
video_out.write(item);
|
|
std::cout << "Processing frame: "<< frame_id << std::endl;
|
|
frame_id += 1;
|
|
}
|
|
}
|
|
std::cout << "inference finished, output video saved at " << video_out_path << std::endl;
|
|
capture.release();
|
|
video_out.release();
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
if (argc < 4) {
|
|
std::cout
|
|
<< "Usage: infer_demo path/to/model_dir path/to/video frame number run_option, "
|
|
"e.g ./infer_model ./vsr_model_dir ./person.mp4 0 2"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
int frame_num = 2;
|
|
if (argc == 5) {
|
|
frame_num = std::atoi(argv[4]);
|
|
}
|
|
if (std::atoi(argv[3]) == 0) {
|
|
CpuInfer(argv[1], argv[2], frame_num);
|
|
} else if (std::atoi(argv[3]) == 1) {
|
|
GpuInfer(argv[1], argv[2], frame_num);
|
|
} else if (std::atoi(argv[3]) == 2) {
|
|
TrtInfer(argv[1], argv[2], frame_num);
|
|
}
|
|
return 0;
|
|
}
|