mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
65 lines
2.2 KiB
C++
65 lines
2.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/runtime.h"
|
|
|
|
namespace fd = fastdeploy;
|
|
|
|
int main(int argc, char* argv[]) {
|
|
std::string model_file = "mobilenetv2/inference.pdmodel";
|
|
std::string params_file = "mobilenetv2/inference.pdiparams";
|
|
|
|
// setup option
|
|
fd::RuntimeOption runtime_option;
|
|
runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
|
|
runtime_option.UseOrtBackend();
|
|
runtime_option.SetCpuThreadNum(12);
|
|
|
|
// **** GPU ****
|
|
// To use GPU, use the following commented code
|
|
// runtime_option.UseGpu(0);
|
|
|
|
// init runtime
|
|
std::unique_ptr<fd::Runtime> runtime =
|
|
std::unique_ptr<fd::Runtime>(new fd::Runtime());
|
|
if (!runtime->Init(runtime_option)) {
|
|
std::cerr << "--- Init FastDeploy Runitme Failed! "
|
|
<< "\n--- Model: " << model_file << std::endl;
|
|
return -1;
|
|
} else {
|
|
std::cout << "--- Init FastDeploy Runitme Done! "
|
|
<< "\n--- Model: " << model_file << std::endl;
|
|
}
|
|
// init input tensor shape
|
|
fd::TensorInfo info = runtime->GetInputInfo(0);
|
|
info.shape = {1, 3, 224, 224};
|
|
|
|
std::vector<fd::FDTensor> input_tensors(1);
|
|
std::vector<fd::FDTensor> output_tensors(1);
|
|
|
|
std::vector<float> inputs_data;
|
|
inputs_data.resize(1 * 3 * 224 * 224);
|
|
for (size_t i = 0; i < inputs_data.size(); ++i) {
|
|
inputs_data[i] = std::rand() % 1000 / 1000.0f;
|
|
}
|
|
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
|
|
|
|
//get input name
|
|
input_tensors[0].name = info.name;
|
|
|
|
runtime->Infer(input_tensors, &output_tensors);
|
|
|
|
output_tensors[0].PrintInfo();
|
|
return 0;
|
|
} |