mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
737 lines
29 KiB
Python
737 lines
29 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
import numpy as np
|
|
from paddleformers.generation import GenerationConfig
|
|
from paddleformers.transformers import Llama3Tokenizer, LlamaTokenizer
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.utils import data_processor_logger
|
|
|
|
_SAMPLING_EPS = 1e-5
|
|
|
|
|
|
class BaseDataProcessor(ABC):
|
|
"""base class for data processor"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Returns:
|
|
None
|
|
"""
|
|
self.tokenizer = self._load_tokenizer()
|
|
self.tokenizer.bos_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.bos_token)
|
|
self.tokenizer.cls_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.cls_token)
|
|
self.tokenizer.sep_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.sep_token)
|
|
self.tokenizer.eos_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.eos_token)
|
|
self.tokenizer.mask_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.mask_token)
|
|
data_processor_logger.info(
|
|
(
|
|
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, ",
|
|
f"cls_token is {self.tokenizer.cls_token}, {self.tokenizer.cls_token_id}, "
|
|
f"sep_token is {self.tokenizer.sep_token}, {self.tokenizer.sep_token_id}, "
|
|
f"eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id}, "
|
|
f"mask_token is {self.tokenizer.mask_token}, {self.tokenizer.mask_token_id}",
|
|
)
|
|
)
|
|
|
|
def _apply_default_parameters(self, request):
|
|
"""
|
|
Apply default value for parameters in request
|
|
"""
|
|
|
|
def set_value(req, key, value):
|
|
value = getattr(self.generation_config, key, value)
|
|
if isinstance(req, dict):
|
|
if key not in req:
|
|
req[key] = value
|
|
else:
|
|
if req.get(key) is None:
|
|
req.set(key, value)
|
|
|
|
set_value(request, "top_p", 0.7)
|
|
set_value(request, "temperature", 1.0)
|
|
set_value(request, "repetition_penalty", 1.0)
|
|
set_value(request, "frequency_penalty", 0.0)
|
|
set_value(request, "presence_penalty", 0.0)
|
|
return request
|
|
|
|
@abstractmethod
|
|
def process_request(self, request, **kwargs):
|
|
"""
|
|
Preprocess the request
|
|
|
|
Args:
|
|
request (Dict): may contain text and messages fields
|
|
**kwargs: others
|
|
|
|
Returns:
|
|
bool: Whether preprocessing is successful
|
|
str: error message
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def process_response(self, response_dict):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def text2ids(self, text, max_model_len=None):
|
|
"""
|
|
text to token ids
|
|
|
|
Args:
|
|
text (str): text
|
|
|
|
Returns:
|
|
List[int]: token ids list
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def messages2ids(self, messages):
|
|
"""
|
|
Convert multi-turn messages into ID sequences.
|
|
|
|
Args:
|
|
messages (List[List[Dict[str, Any]]]): multi-turn messages.
|
|
|
|
Returns:
|
|
List[int]: ID sequences
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def ids2tokens(self, token_id, task_id=None):
|
|
"""
|
|
token ids to strings
|
|
|
|
Args:
|
|
token_id (List[int]): token id
|
|
task_id (str): task id
|
|
|
|
Returns:
|
|
List[str]: strings
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def _load_tokenizer(self):
|
|
"""
|
|
load tokenizer
|
|
|
|
Returns:
|
|
tokenizer (AutoTokenizer)
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class DataProcessor(BaseDataProcessor):
|
|
def __init__(self, model_name_or_path, reasoning_parser_obj=None, tool_parser_obj=None):
|
|
"""
|
|
Initializes the DecodeStatus object.
|
|
|
|
Args:
|
|
model_name_or_path (str): The name or path of the pre-trained model to be loaded.
|
|
Can also be a path to a directory containing the pre-trained model file.
|
|
|
|
Returns:
|
|
None.
|
|
|
|
Raises:
|
|
None.
|
|
"""
|
|
|
|
self.model_name_or_path = model_name_or_path
|
|
|
|
# Generation config
|
|
try:
|
|
self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
|
|
except Exception as e:
|
|
data_processor_logger.warning(
|
|
f"Can't find generation config: {e}, so it will not use generation_config field in the model config"
|
|
)
|
|
self.generation_config = None
|
|
|
|
self.decode_status = dict()
|
|
self.tool_parser_dict = dict()
|
|
self.tokenizer = self._load_tokenizer()
|
|
data_processor_logger.info(
|
|
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, \
|
|
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
|
|
)
|
|
|
|
from paddleformers.trl.llm_utils import get_eos_token_id
|
|
|
|
self.eos_token_ids = get_eos_token_id(self.tokenizer, self.generation_config)
|
|
data_processor_logger.info(
|
|
f"The eos_token_ids obtained by merging tokenizer and generation_config is {self.eos_token_ids}"
|
|
)
|
|
self.eos_token_id_len = len(self.eos_token_ids)
|
|
self.pad_token_id = self.get_pad_id()
|
|
self.reasoning_parser = None
|
|
self.tool_parser_obj = tool_parser_obj
|
|
if reasoning_parser_obj:
|
|
self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
|
|
self.tokenizer.pad_token_id = self.pad_token_id
|
|
|
|
def process_request(self, request, max_model_len=None, **kwargs):
|
|
"""
|
|
Preprocess the request
|
|
|
|
Args:
|
|
request (Dict): may contain text and messages fields
|
|
|
|
Returns:
|
|
bool: Whether preprocessing is successful
|
|
str: error message
|
|
"""
|
|
data_processor_logger.info(f"Start processing request: {request}")
|
|
request.chat_template = kwargs.get("chat_template")
|
|
request = self._apply_default_parameters(request)
|
|
if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0:
|
|
request.eos_token_ids = self.eos_token_ids
|
|
|
|
# processing stop_sequences
|
|
stop_sequences = request.get("stop", [])
|
|
if stop_sequences is not None and len(stop_sequences) != 0:
|
|
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
|
request.set("stop_token_ids", stop_seqs)
|
|
request.set("stop_seqs_len", stop_seqs_len)
|
|
|
|
# processing bad_words
|
|
bad_words = request.get("bad_words")
|
|
bad_words_token_ids = request.get("bad_words_token_ids")
|
|
if bad_words:
|
|
bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
|
|
request["bad_words_token_ids"] = bad_words_token_ids
|
|
|
|
# processing prompt_token_ids
|
|
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
|
if request.prompt is not None:
|
|
prompt = request.prompt
|
|
assert isinstance(prompt, str) or (
|
|
isinstance(prompt, list) and all([isinstance(t, int) for t in prompt])
|
|
), f"prompt must be a string or a list of integers, but got {type(prompt)}"
|
|
if isinstance(prompt, list): # if prompt is a token id list
|
|
request.prompt_token_ids = prompt
|
|
else:
|
|
request.prompt_token_ids = self.text2ids(request.prompt, max_model_len)
|
|
elif request.messages is not None:
|
|
if self.tokenizer.chat_template is None:
|
|
raise ValueError("This model does not support chat_template.")
|
|
task = request.to_dict()
|
|
chat_template_kwargs = kwargs.get("chat_template_kwargs")
|
|
if chat_template_kwargs:
|
|
if isinstance(chat_template_kwargs, dict):
|
|
for k, v in chat_template_kwargs.items():
|
|
if k not in task:
|
|
task[k] = v
|
|
else:
|
|
raise ValueError("Invalid input: chat_template_kwargs must be a dict")
|
|
task.setdefault("enable_thinking", True)
|
|
request.prompt_token_ids = self.messages2ids(task)
|
|
else:
|
|
raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
|
|
|
|
if len(request.prompt_token_ids) == 0:
|
|
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
|
|
|
|
# truncate prompts that exceed the length limit
|
|
if max_model_len is not None and len(request.prompt_token_ids) > max_model_len:
|
|
request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1]
|
|
if request.get("max_tokens") is None:
|
|
request.set("max_tokens", max(1, max_model_len - len(request.prompt_token_ids)))
|
|
if request.get("temperature") < _SAMPLING_EPS:
|
|
# zero temperature is equivalent to greedy sampling
|
|
request.set("temperature", 1)
|
|
if request.get("top_p") < _SAMPLING_EPS:
|
|
request.set("top_p", _SAMPLING_EPS)
|
|
|
|
data_processor_logger.info(f"Processed request: {request}")
|
|
return request
|
|
|
|
def process_request_dict(self, request, max_model_len=None, **kwargs):
|
|
"""
|
|
Preprocess the request
|
|
|
|
Args:
|
|
request (Dict): may contain text and messages fields
|
|
|
|
Returns:
|
|
bool: Whether preprocessing is successful
|
|
str: error message
|
|
"""
|
|
data_processor_logger.info(f"Start processing request dict: {request}")
|
|
request = self._apply_default_parameters(request)
|
|
if not request.get("eos_token_ids"):
|
|
request["eos_token_ids"] = self.eos_token_ids
|
|
|
|
# processing stop_sequences
|
|
stop_sequences = request.get("stop", [])
|
|
if stop_sequences:
|
|
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
|
request["stop_token_ids"] = stop_seqs
|
|
request["stop_seqs_len"] = stop_seqs_len
|
|
|
|
# processing bad_words
|
|
bad_words = request.get("bad_words")
|
|
bad_words_token_ids = request.get("bad_words_token_ids")
|
|
if bad_words:
|
|
bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
|
|
request["bad_words_token_ids"] = bad_words_token_ids
|
|
|
|
# processing prompt_token_ids
|
|
if not request.get("prompt_token_ids"):
|
|
if request.get("prompt"):
|
|
prompt = request.get("prompt")
|
|
assert isinstance(prompt, str) or (
|
|
isinstance(prompt, list) and all([isinstance(t, int) for t in prompt])
|
|
), f"prompt must be a string or a list of integers, but got {type(prompt)}"
|
|
if isinstance(prompt, list): # if prompt is a token id list
|
|
request["prompt_token_ids"] = prompt
|
|
else:
|
|
request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len).tolist()
|
|
elif request.get("messages"):
|
|
if self.tokenizer.chat_template is None:
|
|
raise ValueError("This model does not support chat_template.")
|
|
chat_template_kwargs = request.get("chat_template_kwargs")
|
|
if chat_template_kwargs:
|
|
if isinstance(chat_template_kwargs, dict):
|
|
for k, v in chat_template_kwargs.items():
|
|
if k not in request:
|
|
request[k] = v
|
|
else:
|
|
raise ValueError("Invalid input: chat_template_kwargs must be a dict")
|
|
request.setdefault("enable_thinking", True)
|
|
request["prompt_token_ids"] = self.messages2ids(request)
|
|
else:
|
|
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
|
|
|
|
if len(request["prompt_token_ids"]) == 0:
|
|
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
|
|
|
|
# truncate prompts that exceed the length limit
|
|
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
|
|
request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
|
|
if request.get("max_tokens") is None:
|
|
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
|
|
if request.get("temperature") < _SAMPLING_EPS:
|
|
# zero temperature is equivalent to greedy sampling
|
|
request["temperature"] = 1
|
|
if request.get("top_p") < _SAMPLING_EPS:
|
|
request["top_p"] = _SAMPLING_EPS
|
|
|
|
data_processor_logger.info(f"Processed request dict: {request}")
|
|
return request
|
|
|
|
def process_logprob_response(self, token_ids, **kwargs):
|
|
full_text = self.tokenizer.decode(token_ids, **kwargs)
|
|
return full_text
|
|
|
|
def process_response(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
req_id = response_dict.request_id
|
|
token_ids = response_dict.outputs.token_ids
|
|
if token_ids[-1] == self.tokenizer.eos_token_id:
|
|
token_ids = token_ids[:-1]
|
|
full_text = self.tokenizer.decode(token_ids)
|
|
|
|
# 模型支持思考,并且支持思考
|
|
if self.reasoning_parser:
|
|
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
|
response_dict.outputs.text = text
|
|
response_dict.outputs.reasoning_content = reasoning_content
|
|
else:
|
|
# 模型不支持思考,并且没单独设置enable_thinking为false
|
|
response_dict.outputs.text = full_text
|
|
if self.tool_parser_obj:
|
|
tool_parser = self.tool_parser_obj(self.tokenizer)
|
|
tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
|
|
if tool_call_info.tools_called:
|
|
response_dict.outputs.tool_calls = tool_call_info.tool_calls
|
|
response_dict.outputs.text = tool_call_info.content
|
|
data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
|
|
|
|
return response_dict
|
|
|
|
def process_response_dict_normal(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
enable_thinking = kwargs.get("enable_thinking")
|
|
token_ids = response_dict["outputs"]["token_ids"]
|
|
is_end = response_dict["finished"]
|
|
req_id = response_dict["request_id"]
|
|
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
|
if token_ids[-1] in self.eos_token_ids:
|
|
token_ids = token_ids[:-1]
|
|
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
|
|
if is_end:
|
|
full_text = previous_texts + delta_text
|
|
response_dict["outputs"]["raw_prediction"] = full_text
|
|
if enable_thinking and self.reasoning_parser:
|
|
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
|
|
response_dict["outputs"]["text"] = text
|
|
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
|
else:
|
|
response_dict["outputs"]["text"] = full_text
|
|
if self.tool_parser_obj:
|
|
tool_parser = self.tool_parser_obj(self.tokenizer)
|
|
tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
|
|
if tool_call_info.tools_called:
|
|
response_dict["outputs"]["tool_call"] = tool_call_info.tool_calls
|
|
response_dict["outputs"]["text"] = tool_call_info.content
|
|
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
|
del self.decode_status[req_id]
|
|
return response_dict
|
|
|
|
def process_response_dict_streaming(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
enable_thinking = kwargs.get("enable_thinking")
|
|
is_end = response_dict["finished"]
|
|
req_id = response_dict["request_id"]
|
|
token_ids = response_dict["outputs"]["token_ids"]
|
|
|
|
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
|
if token_ids[-1] in self.eos_token_ids:
|
|
token_ids = token_ids[:-1]
|
|
delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
|
|
response_dict["outputs"]["raw_prediction"] = delta_text
|
|
if self.reasoning_parser and (
|
|
enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser"
|
|
):
|
|
reasoning_delta_message = self.reasoning_parser.extract_reasoning_content_streaming(
|
|
previous_texts,
|
|
previous_texts + delta_text,
|
|
delta_text,
|
|
previous_token_ids,
|
|
previous_token_ids + token_ids,
|
|
token_ids,
|
|
)
|
|
response_dict["outputs"]["delta_message"] = reasoning_delta_message
|
|
if self.tool_parser_obj:
|
|
if req_id not in self.tool_parser_dict:
|
|
self.tool_parser_dict[req_id] = self.tool_parser_obj(self.tokenizer)
|
|
tool_parser = self.tool_parser_dict[req_id]
|
|
tool_call = tool_parser.extract_tool_calls_streaming(
|
|
previous_texts,
|
|
previous_texts + delta_text,
|
|
delta_text,
|
|
previous_token_ids,
|
|
previous_token_ids + token_ids,
|
|
token_ids,
|
|
response_dict,
|
|
)
|
|
if tool_call is None or tool_call.tool_calls:
|
|
response_dict["outputs"]["delta_message"] = tool_call
|
|
response_dict["outputs"]["text"] = delta_text
|
|
if is_end:
|
|
data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
|
|
del self.decode_status[req_id]
|
|
if req_id in self.tool_parser_dict:
|
|
del self.tool_parser_dict[req_id]
|
|
return response_dict
|
|
|
|
def process_response_dict(self, response_dict, **kwargs):
|
|
"""
|
|
Preprocess the response
|
|
|
|
Args:
|
|
response_dict (Dict): response for engine, contain ids fields
|
|
|
|
Returns:
|
|
Dict: response contain text fields
|
|
"""
|
|
enable_thinking = kwargs.pop("enable_thinking", True)
|
|
if enable_thinking is None:
|
|
enable_thinking = True
|
|
stream = kwargs.get("stream", True)
|
|
if stream:
|
|
return self.process_response_dict_streaming(response_dict, enable_thinking=enable_thinking, **kwargs)
|
|
else:
|
|
return self.process_response_dict_normal(
|
|
response_dict=response_dict,
|
|
enable_thinking=enable_thinking,
|
|
**kwargs,
|
|
)
|
|
|
|
def text2ids(self, text, max_model_len):
|
|
"""
|
|
text to token ids
|
|
|
|
Args:
|
|
text (str): text
|
|
|
|
Returns:
|
|
List[int]: token ids list
|
|
"""
|
|
if envs.FD_USE_HF_TOKENIZER:
|
|
tokens = self.tokenizer(
|
|
text,
|
|
return_tensors="np",
|
|
padding=True,
|
|
truncation=True,
|
|
)
|
|
else:
|
|
text = [text] if isinstance(text, str) else text
|
|
|
|
tokens = self.tokenizer(
|
|
text,
|
|
return_tensors="np",
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=max_model_len,
|
|
add_special_tokens=False,
|
|
)
|
|
|
|
return tokens["input_ids"][0]
|
|
|
|
def messages2ids(self, request):
|
|
"""
|
|
Convert multi-turn messages into ID sequences.
|
|
|
|
Args:
|
|
messages (List[List[Dict[str, Any]]]): multi-turn messages.
|
|
|
|
Returns:
|
|
List[int]: ID sequences
|
|
"""
|
|
|
|
spliced_message = self.tokenizer.apply_chat_template(
|
|
request,
|
|
tokenize=False,
|
|
split_special_tokens=False,
|
|
add_special_tokens=False,
|
|
return_tensors="pd",
|
|
chat_template=request.get("chat_template", None),
|
|
)
|
|
request["text_after_process"] = spliced_message
|
|
req_id = None
|
|
tokens = self.tokenizer.tokenize(spliced_message)
|
|
if isinstance(request, dict):
|
|
req_id = request.get("request_id", None)
|
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
|
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
|
return token_ids
|
|
|
|
def ids2tokens(self, token_id, task_id):
|
|
"""
|
|
token ids to strings
|
|
|
|
Args:
|
|
token_ids (List[int]): token ids
|
|
task_id (str): task id
|
|
|
|
Returns:
|
|
List[str]: strings
|
|
"""
|
|
if envs.FD_USE_HF_TOKENIZER:
|
|
if task_id not in self.decode_status:
|
|
# history token ids & history token strings & befer decode str
|
|
self.decode_status[task_id] = [[], [], ""]
|
|
|
|
previous_token_ids = self.decode_status[task_id][0]
|
|
decode_str = self.tokenizer.batch_decode(
|
|
[previous_token_ids + token_id],
|
|
skip_special_tokens=True,
|
|
clean_up_tokenization_spaces=False,
|
|
)
|
|
if isinstance(decode_str, list) and len(decode_str):
|
|
new_str = decode_str[0].replace(self.decode_status[task_id][2], "", 1)
|
|
self.decode_status[task_id][1].append(new_str)
|
|
self.decode_status[task_id][2] = decode_str[0]
|
|
else:
|
|
new_str = ""
|
|
self.decode_status[task_id][0] += token_id
|
|
return new_str
|
|
else:
|
|
if task_id not in self.decode_status:
|
|
# prefix offset & read offset & history token ids & history token strings
|
|
self.decode_status[task_id] = [0, 0, [], ""]
|
|
|
|
prefix_offset = self.decode_status[task_id][0]
|
|
read_offset = self.decode_status[task_id][1]
|
|
previous_token_ids = self.decode_status[task_id][2]
|
|
previous_texts = self.decode_status[task_id][3]
|
|
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
|
|
previous_token_ids + token_id, prefix_offset, read_offset
|
|
)
|
|
self.decode_status[task_id][0] = prefix_offset
|
|
self.decode_status[task_id][1] = read_offset
|
|
self.decode_status[task_id][2] += token_id
|
|
self.decode_status[task_id][3] += decode_str
|
|
|
|
return decode_str, previous_token_ids, previous_texts
|
|
|
|
def _load_tokenizer(self):
|
|
"""
|
|
load tokenizer
|
|
|
|
Returns:
|
|
tokenizer (AutoTokenizer)
|
|
"""
|
|
if envs.FD_USE_HF_TOKENIZER:
|
|
from transformers import AutoTokenizer
|
|
|
|
return AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=False)
|
|
else:
|
|
from paddleformers.transformers import AutoTokenizer
|
|
|
|
return AutoTokenizer.from_pretrained(self.model_name_or_path, padding_side="left", use_fast=True)
|
|
|
|
def clear_request_status(self, task_id):
|
|
"""
|
|
clear request status
|
|
|
|
Args:
|
|
task_id (str): task id
|
|
|
|
Returns:
|
|
results_all (str): all token strings
|
|
"""
|
|
results_all = ""
|
|
if task_id in self.decode_status:
|
|
if envs.FD_USE_HF_TOKENIZER:
|
|
results_all = self.decode_status[task_id][2]
|
|
else:
|
|
results_all = "".join(self.decode_status[task_id][3])
|
|
del self.decode_status[task_id]
|
|
return results_all
|
|
|
|
def get_pad_id(self):
|
|
"""
|
|
get pad_token_id, if not pad_token_id, use eos_token
|
|
|
|
Returns:
|
|
int: pad_token_id
|
|
"""
|
|
if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
|
|
return self.tokenizer.eos_token
|
|
return self.tokenizer.pad_token_id
|
|
|
|
def pad_batch_data(
|
|
self,
|
|
insts,
|
|
pad_id=0,
|
|
return_seq_len=False,
|
|
return_array=True,
|
|
pad_style="right",
|
|
):
|
|
"""Pad the instances to the max sequence length in batch."""
|
|
if len(insts) == 0:
|
|
padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]]
|
|
if return_seq_len:
|
|
seq_len = np.array([], dtype=np.int64) if return_array else []
|
|
return padded_insts, seq_len
|
|
return padded_insts
|
|
|
|
max_len = max(map(len, insts))
|
|
if pad_style == "left":
|
|
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts]
|
|
else:
|
|
padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts]
|
|
if return_array:
|
|
padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len])
|
|
|
|
if return_seq_len:
|
|
seq_len = [len(inst) for inst in insts]
|
|
if return_array:
|
|
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
|
|
return padded_insts, seq_len
|
|
return padded_insts
|
|
|
|
def update_stop_seq(self, stop_sequences):
|
|
"""
|
|
Update stop sequences from request.
|
|
"""
|
|
stop_seqs = []
|
|
for seq in stop_sequences:
|
|
if seq != self.tokenizer.eos_token_id:
|
|
stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq)))
|
|
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False)
|
|
data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
|
|
return stop_seqs, stop_seqs_len
|
|
|
|
def update_bad_words(self, bad_words, bad_words_token_ids):
|
|
"""Support bad words"""
|
|
|
|
token_ids = bad_words_token_ids
|
|
|
|
if token_ids is None:
|
|
token_ids = []
|
|
for bad_word in bad_words:
|
|
# To prohibit words both at the beginning
|
|
# and in the middle of text
|
|
# (related to add_prefix_space tokenizer parameter)
|
|
for add_prefix_space in [False, True]:
|
|
prefix = " " if add_prefix_space else ""
|
|
prompt = prefix + bad_word.lstrip()
|
|
prompt_token_ids = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(prompt))
|
|
|
|
if len(prompt_token_ids) != 1:
|
|
if not add_prefix_space:
|
|
data_processor_logger.warning(
|
|
f"Skip bad_words: <{prompt}>."
|
|
f"Bad words should be a single token."
|
|
f"Got tokens: {prompt_token_ids}."
|
|
)
|
|
continue
|
|
|
|
if prompt_token_ids[0] > self.tokenizer.vocab_size:
|
|
if not add_prefix_space:
|
|
data_processor_logger.warning(
|
|
f"Skip bad_words: <{prompt}>."
|
|
f"All token id values should be satisfying:"
|
|
f" 0 <= token_id < {self.tokenizer.vocab_size}."
|
|
f"Got token: {prompt_token_ids}."
|
|
)
|
|
continue
|
|
|
|
if prompt_token_ids not in token_ids:
|
|
token_ids.extend(prompt_token_ids)
|
|
return token_ids
|