mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-20 23:29:39 +08:00
141 lines
4.6 KiB
C++
141 lines
4.6 KiB
C++
#include "fastdeploy/vision/ppseg/model.h"
|
|
#include "fastdeploy/vision.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ppseg {
|
|
|
|
Model::Model(const std::string& model_file, const std::string& params_file,
|
|
const std::string& config_file, const RuntimeOption& custom_option,
|
|
const Frontend& model_format) {
|
|
config_file_ = config_file;
|
|
valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
|
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER};
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool Model::Initialize() {
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Model::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (cfg["Deploy"]["transforms"]) {
|
|
auto preprocess_cfg = cfg["Deploy"]["transforms"];
|
|
for (const auto& op : preprocess_cfg) {
|
|
FDASSERT(op.IsMap(),
|
|
"Require the transform information in yaml be Map type.");
|
|
if (op["type"].as<std::string>() == "Normalize") {
|
|
std::vector<float> mean = {0.5, 0.5, 0.5};
|
|
std::vector<float> std = {0.5, 0.5, 0.5};
|
|
if (op["mean"]) {
|
|
mean = op["mean"].as<std::vector<float>>();
|
|
}
|
|
if (op["std"]) {
|
|
std = op["std"].as<std::vector<float>>();
|
|
}
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
|
|
|
} else if (op["type"].as<std::string>() == "Resize") {
|
|
const auto& target_size = op["target_size"];
|
|
int resize_width = target_size[0].as<int>();
|
|
int resize_height = target_size[1].as<int>();
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(resize_width, resize_height));
|
|
}
|
|
}
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Model::Preprocess(Mat* mat, FDTensor* output) {
|
|
for (size_t i = 0; i < processors_.size(); ++i) {
|
|
if (!(*(processors_[i].get()))(mat)) {
|
|
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1);
|
|
output->name = InputInfoOfRuntime(0).name;
|
|
return true;
|
|
}
|
|
|
|
bool Model::Postprocess(const FDTensor& infer_result,
|
|
SegmentationResult* result) {
|
|
FDASSERT(infer_result.dtype == FDDataType::INT64,
|
|
"Require the data type of output is int64, but now it's " +
|
|
Str(const_cast<fastdeploy::FDDataType&>(infer_result.dtype)) +
|
|
".");
|
|
result->Clear();
|
|
std::vector<int64_t> output_shape = infer_result.shape;
|
|
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
|
std::multiplies<int>());
|
|
const int64_t* infer_result_buffer =
|
|
reinterpret_cast<const int64_t*>(infer_result.data.data());
|
|
int64_t height = output_shape[1];
|
|
int64_t width = output_shape[2];
|
|
result->Resize(height, width);
|
|
for (int64_t i = 0; i < height; i++) {
|
|
int64_t begin = i * width;
|
|
int64_t end = (i + 1) * width - 1;
|
|
std::copy(infer_result_buffer + begin, infer_result_buffer + end,
|
|
result->masks[i].begin());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Model::Predict(cv::Mat* im, SegmentationResult* result) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> processed_data(1);
|
|
if (!Preprocess(&mat, &(processed_data[0]))) {
|
|
FDERROR << "Failed to preprocess input data while using model:"
|
|
<< ModelName() << "." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<FDTensor> infer_result(1);
|
|
if (!Infer(processed_data, &infer_result)) {
|
|
FDERROR << "Failed to inference while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!Postprocess(infer_result[0], result)) {
|
|
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace ppseg
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|