mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
543 lines
21 KiB
Python
543 lines
21 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import os
|
||
import argparse
|
||
import time
|
||
|
||
import numpy as np
|
||
import paddle
|
||
import paddle.distributed as dist
|
||
import paddle.distributed.fleet as fleet
|
||
|
||
from fastdeploy.engine.config import ModelConfig
|
||
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
|
||
from fastdeploy.utils import get_logger
|
||
|
||
logger = get_logger("worker", "worker.log")
|
||
|
||
|
||
class Worker:
|
||
|
||
def __init__(self, args):
|
||
"""
|
||
Args:
|
||
args (ArgumentParser): 命令行参数,包含模型名称、端口号等信息。
|
||
|
||
Returns:
|
||
None, 无返回值,初始化完成后会将相关参数和对象保存到类属性中。
|
||
|
||
Raises:
|
||
None, 没有异常抛出。
|
||
"""
|
||
|
||
self.args = args
|
||
self.MAX_INFER_SEED = 9223372036854775806
|
||
paddle.set_default_dtype(args.dtype)
|
||
self.device_ids = self.args.device_ids.split(",")
|
||
self.model_cfg = ModelConfig(args.model_name_or_path)
|
||
|
||
from fastdeploy.model_executor.models import \
|
||
inference_runner_supported_models
|
||
|
||
if self.model_cfg.architectures in inference_runner_supported_models:
|
||
from fastdeploy.worker.model_runner.model_runner_inference import \
|
||
ModelRunner
|
||
else:
|
||
from fastdeploy.worker.model_runner.model_runner_paddlenlp import \
|
||
ModelRunner
|
||
|
||
self.init_dist_env()
|
||
self.format_print_configuration()
|
||
self.helper_tensors = {}
|
||
|
||
self.infer_engine = ModelRunner(config=self.model_cfg,
|
||
args=self.args,
|
||
nranks=self.nranks,
|
||
rank=self.rank)
|
||
|
||
# TODO 多机
|
||
address = ('0.0.0.0', self.args.engine_worker_queue_port)
|
||
self.engine_worker_queue = EngineWorkerQueue(address=address,
|
||
is_server=False,
|
||
num_client=self.nranks,
|
||
client_id=self.rank)
|
||
self.init_health()
|
||
|
||
def init_dist_env(self, seed=20):
|
||
"""
|
||
init distributed env
|
||
"""
|
||
|
||
self.nranks = dist.get_world_size()
|
||
strategy = fleet.DistributedStrategy()
|
||
|
||
strategy.hybrid_configs = {
|
||
"dp_degree": 1,
|
||
"mp_degree": self.nranks,
|
||
"pp_degree": 1,
|
||
"sharding_degree": 1,
|
||
}
|
||
|
||
# Set control in tensor parallel
|
||
strategy.tensor_parallel_configs = {"tensor_init_seed": seed}
|
||
fleet.init(is_collective=True, strategy=strategy)
|
||
self.rank = fleet.worker_index()
|
||
|
||
def init_health(self):
|
||
# worker_ready_signal 用于engine感知各worker进程是否Ready
|
||
worker_ready_signal_data = np.zeros(shape=[self.nranks],
|
||
dtype=np.int32)
|
||
self.worker_ready_signal = IPCSignal(name="worker_ready_singnal",
|
||
array=worker_ready_signal_data,
|
||
dtype=np.int32,
|
||
suffix=self.args.engine_pid,
|
||
create=False)
|
||
self.worker_ready_signal.value[self.rank] = 1
|
||
|
||
# worker_live_signal 用于engine感知各worker进程是否存活,记录每个step 时间
|
||
worker_healthy_live_recorded_time_array = np.zeros(shape=[self.nranks],
|
||
dtype=np.int32)
|
||
self.worker_healthy_live_signal = IPCSignal(
|
||
name="worker_healthy_live_signal",
|
||
array=worker_healthy_live_recorded_time_array,
|
||
dtype=np.int32,
|
||
suffix=self.args.engine_pid,
|
||
create=False)
|
||
self.worker_healthy_live_signal.value[self.rank] = int(time.time())
|
||
|
||
# exist_task_signal 用于各worker进程感知是否有新Task需要处理
|
||
exist_task_signal_data = np.zeros([1], dtype=np.int32)
|
||
self.exist_task_signal = IPCSignal(name="exist_task_signal",
|
||
array=exist_task_signal_data,
|
||
dtype=np.int32,
|
||
suffix=self.args.engine_pid,
|
||
create=False)
|
||
|
||
# exist_swapped_task_signal 用于engine感知worker中是否存在swapped task
|
||
exist_swapped_task_signal_data = np.zeros([1], dtype=np.int32)
|
||
self.exist_swapped_task_signal = IPCSignal(
|
||
name="exist_swapped_task_signal",
|
||
array=exist_swapped_task_signal_data,
|
||
dtype=np.int32,
|
||
suffix=self.args.engine_pid,
|
||
create=False)
|
||
|
||
# model_weights_status 用于engine感知各worker中模型权重状态
|
||
model_weights_status = np.zeros([1], dtype=np.int32)
|
||
self.model_weights_status_signal = IPCSignal(
|
||
name="model_weights_status",
|
||
array=model_weights_status,
|
||
dtype=np.int32,
|
||
suffix=self.args.engine_pid,
|
||
create=False)
|
||
|
||
def format_print_configuration(self):
|
||
"""
|
||
print model config
|
||
"""
|
||
logger.info("=============== Model Information ==============")
|
||
for k, v in self.model_cfg.__dict__.items():
|
||
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
||
logger.info("=============== Service Configuration ===============")
|
||
for k, v in vars(self.args).items():
|
||
logger.info("{:<20}:{:<6}{}".format(k, "", v))
|
||
logger.info("=====================================================\n")
|
||
|
||
def step_cuda(self):
|
||
"""
|
||
step cuda
|
||
"""
|
||
from fastdeploy.model_executor.models import \
|
||
inference_runner_supported_models
|
||
|
||
if self.model_cfg.architectures in inference_runner_supported_models:
|
||
if os.getenv('USE_PIP_EFF_LLM'):
|
||
from efficientllm.gpu import step_paddle
|
||
else:
|
||
from fastdeploy.model_executor.ops.gpu import step_paddle
|
||
from fastdeploy.worker.model_runner.model_runner_inference import ModelRunner
|
||
else:
|
||
from paddlenlp_ops import step_paddle
|
||
|
||
step_paddle(
|
||
self.infer_engine.share_inputs["stop_flags"],
|
||
self.infer_engine.share_inputs["seq_lens_this_time"],
|
||
self.infer_engine.share_inputs["step_seq_lens_encoder"],
|
||
self.infer_engine.share_inputs["seq_lens_encoder"],
|
||
self.infer_engine.share_inputs["seq_lens_decoder"],
|
||
self.infer_engine.share_inputs["block_tables"],
|
||
self.infer_engine.share_inputs["encoder_block_lens"],
|
||
self.infer_engine.share_inputs["is_block_step"],
|
||
self.infer_engine.share_inputs["step_block_list"],
|
||
self.infer_engine.share_inputs["step_lens"],
|
||
self.infer_engine.share_inputs["recover_block_list"],
|
||
self.infer_engine.share_inputs["recover_lens"],
|
||
self.infer_engine.share_inputs["need_block_list"],
|
||
self.infer_engine.share_inputs["need_block_len"],
|
||
self.infer_engine.share_inputs["used_list_len"],
|
||
self.infer_engine.share_inputs["free_list"],
|
||
self.infer_engine.share_inputs["free_list_len"],
|
||
self.infer_engine.share_inputs["input_ids"],
|
||
self.infer_engine.share_inputs["pre_ids"],
|
||
self.infer_engine.share_inputs["step_idx"],
|
||
self.infer_engine.share_inputs["next_tokens"],
|
||
self.infer_engine.share_inputs["first_token_ids"],
|
||
self.args.block_size,
|
||
self.args.enc_dec_block_num,
|
||
)
|
||
|
||
def check_model_weights_status(self):
|
||
"""
|
||
check model weights status
|
||
"""
|
||
is_stop = 0
|
||
while self.model_weights_status_signal.value[0] != 0:
|
||
if self.model_weights_status_signal.value[0] == 1:
|
||
logger.info(
|
||
f"infer engine stopped! start to load new checkpoint... {self.rank}"
|
||
)
|
||
self.infer_engine.update_parameters(self.args.engine_pid)
|
||
elif self.model_weights_status_signal.value[0] == -1:
|
||
logger.info(
|
||
f"infer engine stopped! start to clear checkpoint... {self.rank}"
|
||
)
|
||
self.infer_engine.clear_parameters(self.args.engine_pid)
|
||
|
||
while True:
|
||
if self.model_weights_status_signal.value[0] == 0:
|
||
logger.info(f"finished loading new checkpoint {self.rank}")
|
||
break
|
||
elif is_stop == 1 or (self.model_weights_status_signal.value[0]
|
||
== -2 and is_stop == 0):
|
||
if is_stop == 0:
|
||
logger.info(
|
||
f"finished clearing checkpoint {self.rank}")
|
||
is_stop = 1
|
||
time.sleep(0.001)
|
||
break
|
||
else:
|
||
time.sleep(0.001)
|
||
|
||
def run(self):
|
||
"""
|
||
运行函数,不断地从队列中获取任务并进行推理。
|
||
当队列为空或者所有节点都处于等待状态时,将会休眠一段时间再次尝试获取任务。
|
||
|
||
Args:
|
||
None.
|
||
|
||
Returns:
|
||
None.
|
||
|
||
Raises:
|
||
None.
|
||
"""
|
||
infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1],
|
||
fill_value=4,
|
||
dtype="int64")
|
||
self.nnode = 1
|
||
|
||
while True:
|
||
if self.rank == 0:
|
||
if self.model_weights_status_signal.value[0] != 0:
|
||
self.exist_task_signal.value[0] = 2
|
||
else:
|
||
self.exist_task_signal.value[0] = 0
|
||
|
||
if self.nranks > 1:
|
||
paddle.distributed.barrier()
|
||
|
||
if self.exist_task_signal.value[0] == 2:
|
||
self.check_model_weights_status()
|
||
|
||
self.insert_step = False
|
||
|
||
self.worker_healthy_live_signal.value[self.rank] = int(time.time())
|
||
mp_num_per_node = self.nranks
|
||
|
||
if self.rank % mp_num_per_node == 0:
|
||
if self.engine_worker_queue.num_tasks() > 0 and self.infer_engine.prefill_finished():
|
||
if self.nnode > 1:
|
||
self.engine_worker_queue.read_finish_flag.set(1)
|
||
else:
|
||
self.exist_task_signal.value[0] = 1
|
||
|
||
if self.nranks > 1:
|
||
paddle.distributed.barrier()
|
||
|
||
if self.exist_task_signal.value[
|
||
0] == 1 or self.engine_worker_queue.read_finish_flag.get(
|
||
) == 1:
|
||
logger.info(f"Rank: {self.rank} Detected new requests.")
|
||
self.insert_step = True
|
||
|
||
tasks, read_finish = self.engine_worker_queue.get_tasks()
|
||
if read_finish:
|
||
self.exist_task_signal.value[0] = 0
|
||
self.engine_worker_queue.read_finish_flag.set(0)
|
||
|
||
req_dicts = []
|
||
for req_dict, bsz in tasks:
|
||
num_running_requests = int(bsz)
|
||
req_dicts.extend(req_dict)
|
||
logger.info(f"Rank: {self.rank}, num_running_requests: {num_running_requests}, " \
|
||
f"num_insert_requests: {len(req_dicts)}")
|
||
|
||
self.infer_engine.dy_input_preprocess(req_dicts)
|
||
self.infer_engine.share_inputs["not_need_stop"][0] = True
|
||
|
||
if not self.infer_engine.share_inputs["not_need_stop"]:
|
||
time.sleep(0.001)
|
||
continue
|
||
|
||
self.infer_engine.generate()
|
||
self.infer_engine.share_inputs["infer_seed"].add_(
|
||
infer_seed_increment)
|
||
self.infer_engine.share_inputs[
|
||
"infer_seed"][:] %= self.MAX_INFER_SEED
|
||
|
||
self.infer_engine.update_chunked_prefill(req_dicts[0].token_chunk_size)
|
||
self.step_cuda()
|
||
|
||
def determine_num_available_blocks(self):
|
||
"""Profiles the peak memory usage of the model to determine how many
|
||
KV blocks may be allocated without OOMs.
|
||
|
||
The engine will first conduct a profiling of the existing memory usage.
|
||
Then, it calculate the maximum possible number of GPU and CPU blocks
|
||
that can be allocated with the remaining free memory.
|
||
|
||
.. tip::
|
||
You may limit the usage of GPU memory
|
||
by adjusting the `gpu_memory_utilization` parameter.
|
||
"""
|
||
# Profile the memory usage of the model and get the maximum number of
|
||
# cache blocks that can be allocated with the remaining free memory.
|
||
start_time = time.time()
|
||
|
||
GiB = 1024**3
|
||
paddle.device.cuda.empty_cache()
|
||
|
||
paddle.device.cuda.reset_max_memory_allocated()
|
||
before_activation_gpu_memory = paddle.device.cuda.max_memory_allocated(
|
||
) / GiB
|
||
logger.info(
|
||
f"before activate gpu memory: {before_activation_gpu_memory} GiB.")
|
||
|
||
import gc
|
||
|
||
import pynvml
|
||
pynvml.nvmlInit()
|
||
handle = pynvml.nvmlDeviceGetHandleByIndex(
|
||
int(self.device_ids[self.rank]))
|
||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
||
total_gpu_memory = meminfo.total / GiB
|
||
used_gpu_memory = meminfo.used / GiB
|
||
pynvml.nvmlShutdown()
|
||
logger.info(f"used gpu memory: {used_gpu_memory} GiB.")
|
||
|
||
self.run_profile()
|
||
current_max_peak_gpu_memory = paddle.device.cuda.max_memory_reserved(
|
||
) / GiB
|
||
logger.info(
|
||
f"current max peak gpu memory: {current_max_peak_gpu_memory} GiB.")
|
||
per_block_memory_used = self.infer_engine._cal_theortical_kvcache(
|
||
) / GiB
|
||
logger.info(f"each kv cache block takes {per_block_memory_used} GiB.")
|
||
used_cache_gpu_memory = self.args.total_block_num * per_block_memory_used
|
||
logger.info(f"used cache gpu memory: {used_cache_gpu_memory} GiB.")
|
||
model_weights_memory = used_gpu_memory - used_cache_gpu_memory
|
||
paddle_peak_increase = current_max_peak_gpu_memory - before_activation_gpu_memory
|
||
memory_for_current_instance = total_gpu_memory * self.args.gpu_memory_utilization
|
||
available_kv_cache_memory = memory_for_current_instance - used_gpu_memory - \
|
||
paddle_peak_increase + used_cache_gpu_memory
|
||
|
||
|
||
num_gpu_blocks = max(int(available_kv_cache_memory // per_block_memory_used ), self.args.total_block_num)
|
||
profile_time = time.time() - start_time
|
||
|
||
msg = (f"Memory profiling takes {profile_time:.2f} seconds\n"
|
||
"the current instance can use "
|
||
"total_gpu_memory "
|
||
f"({(total_gpu_memory):.2f}GiB)"
|
||
" x gpu_memory_utilization "
|
||
f"({self.args.gpu_memory_utilization})"
|
||
f" = {(memory_for_current_instance):.2f}GiB\n"
|
||
"model weights take "
|
||
f"{(model_weights_memory ):.2f}GiB;"
|
||
" Paddle activation peak memory takes "
|
||
f"{(paddle_peak_increase):.2f}GiB;"
|
||
" the rest of the memory reserved for KV Cache is "
|
||
f"{(available_kv_cache_memory):.2f}GiB.")
|
||
|
||
self.infer_engine.record_profile_msg = {
|
||
"per_block_memory_used":per_block_memory_used,
|
||
"paddle_peak_increase": paddle_peak_increase,
|
||
}
|
||
|
||
logger.info(msg)
|
||
# Final cleanup
|
||
|
||
get_profile_block_num = np.zeros(shape=[self.nranks], dtype=np.int32)
|
||
self.get_profile_block_num_signal = IPCSignal(
|
||
name="get_profile_block_num",
|
||
array=get_profile_block_num,
|
||
dtype=np.int32,
|
||
suffix=self.args.engine_pid,
|
||
create=False)
|
||
self.get_profile_block_num_signal.value[self.rank] = int(
|
||
num_gpu_blocks)
|
||
while np.any(self.get_profile_block_num_signal.value <= 0):
|
||
time.sleep(0.01)
|
||
num_gpu_blocks = self.get_profile_block_num_signal.value.min().item()
|
||
self.get_profile_block_num_signal.value[self.rank] = int(
|
||
num_gpu_blocks)
|
||
logger.info(
|
||
f"{self.get_profile_block_num_signal.value[self.rank]} GPU KV blocks can be allocated."
|
||
)
|
||
self.infer_engine.num_gpu_blocks = num_gpu_blocks
|
||
self.infer_engine._update_share_input_block_num()
|
||
|
||
paddle.device.cuda.empty_cache()
|
||
gc.collect()
|
||
|
||
def run_profile(self):
|
||
"""
|
||
run profile
|
||
"""
|
||
infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1],
|
||
fill_value=4,
|
||
dtype="int64")
|
||
|
||
|
||
self.infer_engine.dummy_input(self.args.max_num_batched_tokens, self.args.max_num_seqs)
|
||
while True:
|
||
if self.nranks > 1:
|
||
paddle.distributed.barrier()
|
||
self.infer_engine.generate()
|
||
self.infer_engine.share_inputs["infer_seed"].add_(
|
||
infer_seed_increment)
|
||
self.infer_engine.share_inputs[
|
||
"infer_seed"][:] %= self.MAX_INFER_SEED
|
||
self.step_cuda()
|
||
if int((self.infer_engine.share_inputs['seq_lens_this_time']
|
||
> 0).sum()) == 0:
|
||
break
|
||
|
||
|
||
def parse_args():
|
||
"""
|
||
parse args from command line
|
||
"""
|
||
parser = argparse.ArgumentParser("FastDeploy LLM Inference")
|
||
parser.add_argument("-m", "--model_name_or_path", type=str, default="./output", help="model dir")
|
||
parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size")
|
||
parser.add_argument("--total_block_num", type=int, default=2000)
|
||
parser.add_argument("--block_size", type=int, default=64)
|
||
parser.add_argument("--engine_worker_queue_port", type=int, default=9923)
|
||
parser.add_argument("--max_model_len",
|
||
type=int,
|
||
default=3072,
|
||
help="max model len")
|
||
parser.add_argument("--device_ids",
|
||
type=str,
|
||
default="0",
|
||
help="cuda visible devices")
|
||
parser.add_argument("--dtype",
|
||
type=str,
|
||
default="bfloat16",
|
||
help="input dtype")
|
||
parser.add_argument("--enc_dec_block_num",
|
||
type=int,
|
||
default=1,
|
||
help="encoder's decoder num")
|
||
parser.add_argument("--kv_cache_ratio",
|
||
type=float,
|
||
default=0.7,
|
||
help="kv cache ratio for input")
|
||
parser.add_argument("--first_token_id",
|
||
type=int,
|
||
default=1,
|
||
help="first token id")
|
||
parser.add_argument("--gpu_memory_utilization",
|
||
type=float,
|
||
default=0.9,
|
||
help="gpu memory utilization")
|
||
parser.add_argument("--engine_pid",
|
||
type=int,
|
||
default=None,
|
||
help="Process ID of engine")
|
||
parser.add_argument("--do_profile",
|
||
type=int,
|
||
default=0,
|
||
help="do profile or not")
|
||
parser.add_argument("--dynamic_load_weight",
|
||
type=int,
|
||
default=0,
|
||
help="dynamic load weight or not")
|
||
parser.add_argument("--pad_token_id",
|
||
type=int,
|
||
default=-1,
|
||
help="pad token id")
|
||
parser.add_argument("--eos_tokens_lens",
|
||
type=int,
|
||
default=2,
|
||
help="eos token lens")
|
||
parser.add_argument("--enable_chunked_prefill",
|
||
action='store_true',
|
||
help="enable chunked prefill")
|
||
parser.add_argument(
|
||
"--speculate_method",
|
||
default=None,
|
||
type=str,
|
||
choices=[
|
||
"autoregressive",
|
||
"inference_with_reference",
|
||
"draft_model",
|
||
"hydra",
|
||
"eagle",
|
||
],
|
||
)
|
||
parser.add_argument(
|
||
"--attention_backend",
|
||
default="APPEND_ATTN",
|
||
type=str,
|
||
choices=[
|
||
"APPEND_ATTN",
|
||
],
|
||
)
|
||
parser.add_argument("--speculate_max_draft_tokens", type=int, default=1)
|
||
|
||
parser.add_argument("--max_num_batched_tokens", type=int, default=2048, help="max num batched tokens")
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
|
||
def main():
|
||
"""
|
||
start worker
|
||
"""
|
||
args = parse_args()
|
||
worker = Worker(args)
|
||
if args.do_profile:
|
||
worker.determine_num_available_blocks()
|
||
worker.run()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|