Files
FastDeploy/fastdeploy/worker/worker.py
2025-06-16 00:04:48 +08:00

543 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import argparse
import time
import numpy as np
import paddle
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
from fastdeploy.engine.config import ModelConfig
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
from fastdeploy.utils import get_logger
logger = get_logger("worker", "worker.log")
class Worker:
def __init__(self, args):
"""
Args:
args (ArgumentParser): 命令行参数,包含模型名称、端口号等信息。
Returns:
None, 无返回值,初始化完成后会将相关参数和对象保存到类属性中。
Raises:
None, 没有异常抛出。
"""
self.args = args
self.MAX_INFER_SEED = 9223372036854775806
paddle.set_default_dtype(args.dtype)
self.device_ids = self.args.device_ids.split(",")
self.model_cfg = ModelConfig(args.model_name_or_path)
from fastdeploy.model_executor.models import \
inference_runner_supported_models
if self.model_cfg.architectures in inference_runner_supported_models:
from fastdeploy.worker.model_runner.model_runner_inference import \
ModelRunner
else:
from fastdeploy.worker.model_runner.model_runner_paddlenlp import \
ModelRunner
self.init_dist_env()
self.format_print_configuration()
self.helper_tensors = {}
self.infer_engine = ModelRunner(config=self.model_cfg,
args=self.args,
nranks=self.nranks,
rank=self.rank)
# TODO 多机
address = ('0.0.0.0', self.args.engine_worker_queue_port)
self.engine_worker_queue = EngineWorkerQueue(address=address,
is_server=False,
num_client=self.nranks,
client_id=self.rank)
self.init_health()
def init_dist_env(self, seed=20):
"""
init distributed env
"""
self.nranks = dist.get_world_size()
strategy = fleet.DistributedStrategy()
strategy.hybrid_configs = {
"dp_degree": 1,
"mp_degree": self.nranks,
"pp_degree": 1,
"sharding_degree": 1,
}
# Set control in tensor parallel
strategy.tensor_parallel_configs = {"tensor_init_seed": seed}
fleet.init(is_collective=True, strategy=strategy)
self.rank = fleet.worker_index()
def init_health(self):
# worker_ready_signal 用于engine感知各worker进程是否Ready
worker_ready_signal_data = np.zeros(shape=[self.nranks],
dtype=np.int32)
self.worker_ready_signal = IPCSignal(name="worker_ready_singnal",
array=worker_ready_signal_data,
dtype=np.int32,
suffix=self.args.engine_pid,
create=False)
self.worker_ready_signal.value[self.rank] = 1
# worker_live_signal 用于engine感知各worker进程是否存活记录每个step 时间
worker_healthy_live_recorded_time_array = np.zeros(shape=[self.nranks],
dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=worker_healthy_live_recorded_time_array,
dtype=np.int32,
suffix=self.args.engine_pid,
create=False)
self.worker_healthy_live_signal.value[self.rank] = int(time.time())
# exist_task_signal 用于各worker进程感知是否有新Task需要处理
exist_task_signal_data = np.zeros([1], dtype=np.int32)
self.exist_task_signal = IPCSignal(name="exist_task_signal",
array=exist_task_signal_data,
dtype=np.int32,
suffix=self.args.engine_pid,
create=False)
# exist_swapped_task_signal 用于engine感知worker中是否存在swapped task
exist_swapped_task_signal_data = np.zeros([1], dtype=np.int32)
self.exist_swapped_task_signal = IPCSignal(
name="exist_swapped_task_signal",
array=exist_swapped_task_signal_data,
dtype=np.int32,
suffix=self.args.engine_pid,
create=False)
# model_weights_status 用于engine感知各worker中模型权重状态
model_weights_status = np.zeros([1], dtype=np.int32)
self.model_weights_status_signal = IPCSignal(
name="model_weights_status",
array=model_weights_status,
dtype=np.int32,
suffix=self.args.engine_pid,
create=False)
def format_print_configuration(self):
"""
print model config
"""
logger.info("=============== Model Information ==============")
for k, v in self.model_cfg.__dict__.items():
logger.info("{:<20}:{:<6}{}".format(k, "", v))
logger.info("=============== Service Configuration ===============")
for k, v in vars(self.args).items():
logger.info("{:<20}:{:<6}{}".format(k, "", v))
logger.info("=====================================================\n")
def step_cuda(self):
"""
step cuda
"""
from fastdeploy.model_executor.models import \
inference_runner_supported_models
if self.model_cfg.architectures in inference_runner_supported_models:
if os.getenv('USE_PIP_EFF_LLM'):
from efficientllm.gpu import step_paddle
else:
from fastdeploy.model_executor.ops.gpu import step_paddle
from fastdeploy.worker.model_runner.model_runner_inference import ModelRunner
else:
from paddlenlp_ops import step_paddle
step_paddle(
self.infer_engine.share_inputs["stop_flags"],
self.infer_engine.share_inputs["seq_lens_this_time"],
self.infer_engine.share_inputs["step_seq_lens_encoder"],
self.infer_engine.share_inputs["seq_lens_encoder"],
self.infer_engine.share_inputs["seq_lens_decoder"],
self.infer_engine.share_inputs["block_tables"],
self.infer_engine.share_inputs["encoder_block_lens"],
self.infer_engine.share_inputs["is_block_step"],
self.infer_engine.share_inputs["step_block_list"],
self.infer_engine.share_inputs["step_lens"],
self.infer_engine.share_inputs["recover_block_list"],
self.infer_engine.share_inputs["recover_lens"],
self.infer_engine.share_inputs["need_block_list"],
self.infer_engine.share_inputs["need_block_len"],
self.infer_engine.share_inputs["used_list_len"],
self.infer_engine.share_inputs["free_list"],
self.infer_engine.share_inputs["free_list_len"],
self.infer_engine.share_inputs["input_ids"],
self.infer_engine.share_inputs["pre_ids"],
self.infer_engine.share_inputs["step_idx"],
self.infer_engine.share_inputs["next_tokens"],
self.infer_engine.share_inputs["first_token_ids"],
self.args.block_size,
self.args.enc_dec_block_num,
)
def check_model_weights_status(self):
"""
check model weights status
"""
is_stop = 0
while self.model_weights_status_signal.value[0] != 0:
if self.model_weights_status_signal.value[0] == 1:
logger.info(
f"infer engine stopped! start to load new checkpoint... {self.rank}"
)
self.infer_engine.update_parameters(self.args.engine_pid)
elif self.model_weights_status_signal.value[0] == -1:
logger.info(
f"infer engine stopped! start to clear checkpoint... {self.rank}"
)
self.infer_engine.clear_parameters(self.args.engine_pid)
while True:
if self.model_weights_status_signal.value[0] == 0:
logger.info(f"finished loading new checkpoint {self.rank}")
break
elif is_stop == 1 or (self.model_weights_status_signal.value[0]
== -2 and is_stop == 0):
if is_stop == 0:
logger.info(
f"finished clearing checkpoint {self.rank}")
is_stop = 1
time.sleep(0.001)
break
else:
time.sleep(0.001)
def run(self):
"""
运行函数,不断地从队列中获取任务并进行推理。
当队列为空或者所有节点都处于等待状态时,将会休眠一段时间再次尝试获取任务。
Args:
None.
Returns:
None.
Raises:
None.
"""
infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1],
fill_value=4,
dtype="int64")
self.nnode = 1
while True:
if self.rank == 0:
if self.model_weights_status_signal.value[0] != 0:
self.exist_task_signal.value[0] = 2
else:
self.exist_task_signal.value[0] = 0
if self.nranks > 1:
paddle.distributed.barrier()
if self.exist_task_signal.value[0] == 2:
self.check_model_weights_status()
self.insert_step = False
self.worker_healthy_live_signal.value[self.rank] = int(time.time())
mp_num_per_node = self.nranks
if self.rank % mp_num_per_node == 0:
if self.engine_worker_queue.num_tasks() > 0 and self.infer_engine.prefill_finished():
if self.nnode > 1:
self.engine_worker_queue.read_finish_flag.set(1)
else:
self.exist_task_signal.value[0] = 1
if self.nranks > 1:
paddle.distributed.barrier()
if self.exist_task_signal.value[
0] == 1 or self.engine_worker_queue.read_finish_flag.get(
) == 1:
logger.info(f"Rank: {self.rank} Detected new requests.")
self.insert_step = True
tasks, read_finish = self.engine_worker_queue.get_tasks()
if read_finish:
self.exist_task_signal.value[0] = 0
self.engine_worker_queue.read_finish_flag.set(0)
req_dicts = []
for req_dict, bsz in tasks:
num_running_requests = int(bsz)
req_dicts.extend(req_dict)
logger.info(f"Rank: {self.rank}, num_running_requests: {num_running_requests}, " \
f"num_insert_requests: {len(req_dicts)}")
self.infer_engine.dy_input_preprocess(req_dicts)
self.infer_engine.share_inputs["not_need_stop"][0] = True
if not self.infer_engine.share_inputs["not_need_stop"]:
time.sleep(0.001)
continue
self.infer_engine.generate()
self.infer_engine.share_inputs["infer_seed"].add_(
infer_seed_increment)
self.infer_engine.share_inputs[
"infer_seed"][:] %= self.MAX_INFER_SEED
self.infer_engine.update_chunked_prefill(req_dicts[0].token_chunk_size)
self.step_cuda()
def determine_num_available_blocks(self):
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
.. tip::
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
start_time = time.time()
GiB = 1024**3
paddle.device.cuda.empty_cache()
paddle.device.cuda.reset_max_memory_allocated()
before_activation_gpu_memory = paddle.device.cuda.max_memory_allocated(
) / GiB
logger.info(
f"before activate gpu memory: {before_activation_gpu_memory} GiB.")
import gc
import pynvml
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(
int(self.device_ids[self.rank]))
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
total_gpu_memory = meminfo.total / GiB
used_gpu_memory = meminfo.used / GiB
pynvml.nvmlShutdown()
logger.info(f"used gpu memory: {used_gpu_memory} GiB.")
self.run_profile()
current_max_peak_gpu_memory = paddle.device.cuda.max_memory_reserved(
) / GiB
logger.info(
f"current max peak gpu memory: {current_max_peak_gpu_memory} GiB.")
per_block_memory_used = self.infer_engine._cal_theortical_kvcache(
) / GiB
logger.info(f"each kv cache block takes {per_block_memory_used} GiB.")
used_cache_gpu_memory = self.args.total_block_num * per_block_memory_used
logger.info(f"used cache gpu memory: {used_cache_gpu_memory} GiB.")
model_weights_memory = used_gpu_memory - used_cache_gpu_memory
paddle_peak_increase = current_max_peak_gpu_memory - before_activation_gpu_memory
memory_for_current_instance = total_gpu_memory * self.args.gpu_memory_utilization
available_kv_cache_memory = memory_for_current_instance - used_gpu_memory - \
paddle_peak_increase + used_cache_gpu_memory
num_gpu_blocks = max(int(available_kv_cache_memory // per_block_memory_used ), self.args.total_block_num)
profile_time = time.time() - start_time
msg = (f"Memory profiling takes {profile_time:.2f} seconds\n"
"the current instance can use "
"total_gpu_memory "
f"({(total_gpu_memory):.2f}GiB)"
" x gpu_memory_utilization "
f"({self.args.gpu_memory_utilization})"
f" = {(memory_for_current_instance):.2f}GiB\n"
"model weights take "
f"{(model_weights_memory ):.2f}GiB;"
" Paddle activation peak memory takes "
f"{(paddle_peak_increase):.2f}GiB;"
" the rest of the memory reserved for KV Cache is "
f"{(available_kv_cache_memory):.2f}GiB.")
self.infer_engine.record_profile_msg = {
"per_block_memory_used":per_block_memory_used,
"paddle_peak_increase": paddle_peak_increase,
}
logger.info(msg)
# Final cleanup
get_profile_block_num = np.zeros(shape=[self.nranks], dtype=np.int32)
self.get_profile_block_num_signal = IPCSignal(
name="get_profile_block_num",
array=get_profile_block_num,
dtype=np.int32,
suffix=self.args.engine_pid,
create=False)
self.get_profile_block_num_signal.value[self.rank] = int(
num_gpu_blocks)
while np.any(self.get_profile_block_num_signal.value <= 0):
time.sleep(0.01)
num_gpu_blocks = self.get_profile_block_num_signal.value.min().item()
self.get_profile_block_num_signal.value[self.rank] = int(
num_gpu_blocks)
logger.info(
f"{self.get_profile_block_num_signal.value[self.rank]} GPU KV blocks can be allocated."
)
self.infer_engine.num_gpu_blocks = num_gpu_blocks
self.infer_engine._update_share_input_block_num()
paddle.device.cuda.empty_cache()
gc.collect()
def run_profile(self):
"""
run profile
"""
infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1],
fill_value=4,
dtype="int64")
self.infer_engine.dummy_input(self.args.max_num_batched_tokens, self.args.max_num_seqs)
while True:
if self.nranks > 1:
paddle.distributed.barrier()
self.infer_engine.generate()
self.infer_engine.share_inputs["infer_seed"].add_(
infer_seed_increment)
self.infer_engine.share_inputs[
"infer_seed"][:] %= self.MAX_INFER_SEED
self.step_cuda()
if int((self.infer_engine.share_inputs['seq_lens_this_time']
> 0).sum()) == 0:
break
def parse_args():
"""
parse args from command line
"""
parser = argparse.ArgumentParser("FastDeploy LLM Inference")
parser.add_argument("-m", "--model_name_or_path", type=str, default="./output", help="model dir")
parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size")
parser.add_argument("--total_block_num", type=int, default=2000)
parser.add_argument("--block_size", type=int, default=64)
parser.add_argument("--engine_worker_queue_port", type=int, default=9923)
parser.add_argument("--max_model_len",
type=int,
default=3072,
help="max model len")
parser.add_argument("--device_ids",
type=str,
default="0",
help="cuda visible devices")
parser.add_argument("--dtype",
type=str,
default="bfloat16",
help="input dtype")
parser.add_argument("--enc_dec_block_num",
type=int,
default=1,
help="encoder's decoder num")
parser.add_argument("--kv_cache_ratio",
type=float,
default=0.7,
help="kv cache ratio for input")
parser.add_argument("--first_token_id",
type=int,
default=1,
help="first token id")
parser.add_argument("--gpu_memory_utilization",
type=float,
default=0.9,
help="gpu memory utilization")
parser.add_argument("--engine_pid",
type=int,
default=None,
help="Process ID of engine")
parser.add_argument("--do_profile",
type=int,
default=0,
help="do profile or not")
parser.add_argument("--dynamic_load_weight",
type=int,
default=0,
help="dynamic load weight or not")
parser.add_argument("--pad_token_id",
type=int,
default=-1,
help="pad token id")
parser.add_argument("--eos_tokens_lens",
type=int,
default=2,
help="eos token lens")
parser.add_argument("--enable_chunked_prefill",
action='store_true',
help="enable chunked prefill")
parser.add_argument(
"--speculate_method",
default=None,
type=str,
choices=[
"autoregressive",
"inference_with_reference",
"draft_model",
"hydra",
"eagle",
],
)
parser.add_argument(
"--attention_backend",
default="APPEND_ATTN",
type=str,
choices=[
"APPEND_ATTN",
],
)
parser.add_argument("--speculate_max_draft_tokens", type=int, default=1)
parser.add_argument("--max_num_batched_tokens", type=int, default=2048, help="max num batched tokens")
args = parser.parse_args()
return args
def main():
"""
start worker
"""
args = parse_args()
worker = Worker(args)
if args.do_profile:
worker.determine_num_available_blocks()
worker.run()
if __name__ == "__main__":
main()