mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* support async download features * add test case * update code
149 lines
6.4 KiB
Python
149 lines
6.4 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from dataclasses import asdict
|
|
from types import SimpleNamespace
|
|
|
|
from fastdeploy.config import CacheConfig, FDConfig, ParallelConfig, SchedulerConfig
|
|
from fastdeploy.engine.args_utils import EngineArgs
|
|
from fastdeploy.engine.request import Request
|
|
from fastdeploy.engine.sched.resource_manager_v1 import ResourceManagerV1
|
|
|
|
|
|
def test_normal_schedule():
|
|
max_num_seqs = 3
|
|
engine_args = EngineArgs(max_num_seqs=max_num_seqs, num_gpu_blocks_override=160, max_num_batched_tokens=3200)
|
|
args = asdict(engine_args)
|
|
cache_cfg = CacheConfig(args)
|
|
model_cfg = SimpleNamespace(enable_mm=False)
|
|
speculative_cfg = SimpleNamespace(method=None)
|
|
model_cfg.print = print
|
|
model_cfg.max_model_len = 5120
|
|
cache_cfg.bytes_per_layer_per_block = 1
|
|
parallel_cfg = ParallelConfig(args)
|
|
scheduler_cfg = SchedulerConfig(args)
|
|
graph_opt_cfg = engine_args.create_graph_optimization_config()
|
|
fd_config = FDConfig(
|
|
model_config=model_cfg,
|
|
cache_config=cache_cfg,
|
|
parallel_config=parallel_cfg,
|
|
speculative_config=speculative_cfg,
|
|
graph_opt_config=graph_opt_cfg,
|
|
scheduler_config=scheduler_cfg,
|
|
)
|
|
resource_manager_v1 = ResourceManagerV1(
|
|
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
|
|
)
|
|
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3199, "prompt_token_ids_len": 3199})
|
|
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [2] * 3201, "prompt_token_ids_len": 3201})
|
|
req3 = Request.from_dict({"request_id": "req3", "prompt_token_ids": [3] * 3200, "prompt_token_ids_len": 3200})
|
|
resource_manager_v1.add_request(req1)
|
|
resource_manager_v1.add_request(req2)
|
|
resource_manager_v1.add_request(req3)
|
|
# step 1
|
|
assert len(resource_manager_v1.waiting) == 3
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert scheduler_reqs[1].request_id == "req2"
|
|
assert scheduler_reqs[0].prefill_start_index == 0
|
|
assert scheduler_reqs[1].prefill_start_index == 0
|
|
assert scheduler_reqs[0].prefill_end_index == 3199
|
|
assert scheduler_reqs[1].prefill_end_index == 1
|
|
assert len(resource_manager_v1.running) == 2
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# step 2
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert len(scheduler_reqs[0].block_tables) == 52
|
|
assert scheduler_reqs[1].request_id == "req2"
|
|
assert scheduler_reqs[1].prefill_start_index == 1
|
|
assert scheduler_reqs[1].prefill_end_index == 3200
|
|
assert len(resource_manager_v1.running) == 2
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# step 3
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req2"
|
|
assert scheduler_reqs[0].prefill_start_index == 3200
|
|
assert scheduler_reqs[0].prefill_end_index == 3201
|
|
assert scheduler_reqs[1].request_id == "req3"
|
|
assert scheduler_reqs[1].prefill_start_index == 0
|
|
assert scheduler_reqs[1].prefill_end_index == 3198
|
|
assert len(resource_manager_v1.running) == 3
|
|
assert len(resource_manager_v1.waiting) == 0
|
|
|
|
|
|
def test_preempted_request():
|
|
max_num_seqs = 2
|
|
engine_args = EngineArgs(max_num_seqs=max_num_seqs, num_gpu_blocks_override=102, max_num_batched_tokens=3200)
|
|
args = asdict(engine_args)
|
|
cache_cfg = CacheConfig(args)
|
|
model_cfg = SimpleNamespace(enable_mm=False)
|
|
speculative_cfg = SimpleNamespace(method=None)
|
|
model_cfg.print = print
|
|
model_cfg.max_model_len = 5120
|
|
cache_cfg.bytes_per_layer_per_block = 1
|
|
parallel_cfg = ParallelConfig(args)
|
|
scheduler_cfg = SchedulerConfig(args)
|
|
graph_opt_cfg = engine_args.create_graph_optimization_config()
|
|
fd_config = FDConfig(
|
|
model_config=model_cfg,
|
|
cache_config=cache_cfg,
|
|
parallel_config=parallel_cfg,
|
|
graph_opt_config=graph_opt_cfg,
|
|
speculative_config=speculative_cfg,
|
|
scheduler_config=scheduler_cfg,
|
|
)
|
|
resource_manager_v1 = ResourceManagerV1(
|
|
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
|
|
)
|
|
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3200, "prompt_token_ids_len": 3200})
|
|
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [2] * 3200, "prompt_token_ids_len": 3200})
|
|
resource_manager_v1.add_request(req1)
|
|
resource_manager_v1.add_request(req2)
|
|
# step 1
|
|
assert len(resource_manager_v1.waiting) == 2
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 1
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert scheduler_reqs[0].prefill_start_index == 0
|
|
assert scheduler_reqs[0].prefill_end_index == 3200
|
|
assert len(resource_manager_v1.running) == 1
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# step 2
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert len(scheduler_reqs[0].block_tables) == 52
|
|
# step 3
|
|
req1.output_token_ids.extend([1] * 128)
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req2"
|
|
assert len(resource_manager_v1.running) == 1
|
|
# to be added into waiting queue
|
|
assert len(resource_manager_v1.waiting) == 0
|
|
assert "req2" in resource_manager_v1.to_be_rescheduled_request_id_set
|
|
# mock token_processor to add into waiting
|
|
resource_manager_v1.waiting.appendleft(req2)
|
|
# step 4
|
|
scheduler_reqs, _ = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 0
|
|
assert len(resource_manager_v1.running) == 1
|
|
assert len(resource_manager_v1.waiting) == 1
|