mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* add prompt logprobs * Merge prompt_logprobs_tensors and prompt_logprobs * fix param check * trigger ci * fix unitest * fix logprobs bug
155 lines
5.8 KiB
Python
155 lines
5.8 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import unittest
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import numpy as np
|
|
|
|
from fastdeploy.engine.request import CompletionOutput, RequestOutput
|
|
from fastdeploy.output.token_processor import TokenProcessor
|
|
from fastdeploy.worker.output import LogprobsLists
|
|
|
|
|
|
class TestTokenProcessorLogprobs(unittest.TestCase):
|
|
def setUp(self):
|
|
self.cfg = MagicMock()
|
|
self.cfg.model_config.enable_logprob = True
|
|
self.cfg.speculative_config.method = None
|
|
self.cfg.parallel_config.local_data_parallel_id = 0
|
|
self.cached_generated_tokens = MagicMock()
|
|
self.engine_worker_queue = MagicMock()
|
|
self.split_connector = MagicMock()
|
|
|
|
self.processor = TokenProcessor(
|
|
self.cfg, self.cached_generated_tokens, self.engine_worker_queue, self.split_connector
|
|
)
|
|
|
|
# Mock resource manager
|
|
self.processor.resource_manager = MagicMock()
|
|
self.processor.resource_manager.stop_flags = [False]
|
|
|
|
# Create a proper task mock with time attributes
|
|
self.task_mock = MagicMock()
|
|
self.task_mock.request_id = "test_request"
|
|
self.task_mock.pooling_params = None
|
|
self.task_mock.messages = None
|
|
self.task_mock.disaggregate_info = None
|
|
self.task_mock.eos_token_ids = [2]
|
|
self.task_mock.inference_start_time = 100.0 # Set a float value for time calculation
|
|
self.task_mock.arrival_time = 90.0
|
|
self.task_mock.preprocess_end_time = 95.0
|
|
self.task_mock.preprocess_start_time = 90.0
|
|
self.task_mock.schedule_start_time = 95.0
|
|
self.task_mock.llm_engine_recv_req_timestamp = 95.0
|
|
self.task_mock.ic_req_data = {}
|
|
self.task_mock.prompt_token_ids_len = 0
|
|
|
|
self.processor.resource_manager.tasks_list = [self.task_mock]
|
|
|
|
# Mock logger
|
|
self.processor.llm_logger = MagicMock()
|
|
|
|
# Mock metrics to avoid prometheus dependency issues
|
|
self.processor.main_process_metrics = MagicMock()
|
|
self.processor._recycle_resources = MagicMock()
|
|
|
|
# Mock the _process_per_token method to avoid prometheus issues
|
|
self.processor._process_per_token = MagicMock()
|
|
self.processor._process_per_token.return_value = RequestOutput(
|
|
request_id="test_request",
|
|
outputs=CompletionOutput(
|
|
index=0,
|
|
send_idx=0,
|
|
token_ids=[],
|
|
draft_token_ids=[],
|
|
),
|
|
finished=False,
|
|
metrics=MagicMock(),
|
|
)
|
|
|
|
def test_process_logprobs_success(self):
|
|
"""Test successful logprobs parsing"""
|
|
stream_data = MagicMock()
|
|
logprobs = MagicMock()
|
|
logprobs.tolists.return_value = LogprobsLists(
|
|
logprobs=[[0.5]], logprob_token_ids=[[1]], sampled_token_ranks=[0]
|
|
)
|
|
stream_data.logprobs = logprobs
|
|
stream_data.tokens = np.array([1])
|
|
stream_data.batch_id = 0
|
|
|
|
result = self.processor._process_batch_output_use_zmq([stream_data])
|
|
|
|
self.assertEqual(len(result), 1)
|
|
self.processor.llm_logger.warning.assert_not_called()
|
|
|
|
def test_process_logprobs_failure(self):
|
|
"""Test failed logprobs parsing"""
|
|
stream_data = MagicMock()
|
|
stream_data.logprobs = MagicMock()
|
|
stream_data.logprobs.tolists.side_effect = Exception("Test error")
|
|
stream_data.tokens = np.array([1])
|
|
stream_data.batch_id = 0
|
|
|
|
with patch.object(self.processor.llm_logger, "warning"):
|
|
result = self.processor._process_batch_output_use_zmq([stream_data])
|
|
|
|
self.assertEqual(len(result), 1)
|
|
self.assertIsNone(result[0].outputs.logprob)
|
|
|
|
def test_process_prompt_logprobs_success(self):
|
|
"""Test successful prompt_logprobs parsing"""
|
|
stream_data = MagicMock()
|
|
stream_data.logprobs = None
|
|
stream_data.prompt_logprobs = np.array([0.1, 0.2])
|
|
stream_data.tokens = np.array([1])
|
|
stream_data.batch_id = 0
|
|
|
|
result = self.processor._process_batch_output_use_zmq([stream_data])
|
|
|
|
self.assertEqual(len(result), 1)
|
|
self.processor.llm_logger.warning.assert_not_called()
|
|
|
|
def test_process_prompt_logprobs_failure(self):
|
|
"""Test failed prompt_logprobs parsing"""
|
|
stream_data = MagicMock()
|
|
stream_data.logprobs = None
|
|
stream_data.prompt_logprobs = MagicMock()
|
|
stream_data.prompt_logprobs.tolist.side_effect = AttributeError("'NoneType' object has no attribute 'tolist'")
|
|
stream_data.tokens = np.array([1])
|
|
stream_data.batch_id = 0
|
|
|
|
with patch.object(self.processor.llm_logger, "warning"):
|
|
result = self.processor._process_batch_output_use_zmq([stream_data])
|
|
|
|
self.assertEqual(len(result), 1)
|
|
self.assertIsNone(getattr(result[0], "prompt_logprobs", None))
|
|
|
|
def test_process_batch_with_stop_flag(self):
|
|
"""Test processing when stop flag is True"""
|
|
self.processor.resource_manager.stop_flags = [True]
|
|
stream_data = MagicMock()
|
|
stream_data.batch_id = 0
|
|
|
|
result = self.processor._process_batch_output_use_zmq([stream_data])
|
|
|
|
self.assertEqual(len(result), 0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|