Files
FastDeploy/tests/eplb/test_experts_manager.py
kevin 8e4e3ff510 [Feature] support eplb in api_server (#4782)
* support eplb in api_server

* update code

* add eplb test case

* update eplb

* support tp+dp eplb

* update test cese

* update code

* update code

* fix bug

* update copilot review

* update test case name
2025-11-24 20:22:29 +08:00

346 lines
14 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from dataclasses import asdict
from types import SimpleNamespace
from unittest.mock import MagicMock, patch
import numpy as np
from fastdeploy.config import (
CacheConfig,
EPLBConfig,
FDConfig,
ParallelConfig,
SchedulerConfig,
)
from fastdeploy.engine.args_utils import EngineArgs
from fastdeploy.eplb.experts_manager import RedundantExpertManager
class TestRedundantExpertManager(unittest.TestCase):
"""Test cases for experts_manager.py"""
def setUp(self):
"""Set up test fixtures"""
# Create mock config objects
max_num_seqs = 2
engine_args = EngineArgs(
max_num_seqs=max_num_seqs,
num_gpu_blocks_override=102,
max_num_batched_tokens=3200,
)
args = asdict(engine_args)
cache_cfg = CacheConfig(args)
model_cfg = SimpleNamespace(enable_mm=True) # Enable multimodal for feature testing
speculative_cfg = SimpleNamespace(method=None)
model_cfg.print = print
model_cfg.max_model_len = 5120
model_cfg.num_hidden_layers = 3
model_cfg.moe_num_experts = 64
model_cfg.moe_layer_start_index = 1
model_cfg.model = "/test/model"
cache_cfg.bytes_per_layer_per_block = 1
parallel_cfg = ParallelConfig(args)
scheduler_cfg = SchedulerConfig(args)
graph_opt_cfg = engine_args.create_graph_optimization_config()
eplb_args = {
"redundant_experts_num": 0,
"redundant_expert_api_user": "test_user",
"redundant_expert_api_password": "test_pass",
"redundant_expert_eplb_strategy": "",
"redundant_expert_ip_shm_size": 1024,
"moe_quant_type": "",
"redundant_expert_enable_schedule_cordon": False,
}
eplb_config = EPLBConfig(eplb_args)
self.fd_config = FDConfig(
model_config=model_cfg,
cache_config=cache_cfg,
parallel_config=parallel_cfg,
graph_opt_config=graph_opt_cfg,
speculative_config=speculative_cfg,
scheduler_config=scheduler_cfg,
eplb_config=eplb_config,
)
self.fd_config.parallel_config.local_data_parallel_id = 0
self.fd_config.splitwise_role = "decode"
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
def test_init(self, mock_thread, mock_process, mock_get_logger):
"""Test RedundantExpertManager initialization"""
# Mock logger
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
# Mock process and thread
mock_process_instance = MagicMock()
mock_process.return_value = mock_process_instance
mock_thread_instance = MagicMock()
mock_thread.return_value = mock_thread_instance
# Test initialization
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Verify initialization
self.assertEqual(manager.rank, 0)
self.assertEqual(manager.ep_size, 32)
self.assertEqual(manager.fd_config, self.fd_config)
self.assertEqual(manager.num_logical_experts, 64)
self.assertEqual(manager.num_replicas, 64) # 64 + 0 redundant
# Verify arrays are created
self.assertEqual(manager.model_ep_rank_to_expert_id_list.shape, (3, 64))
self.assertEqual(manager.model_expert_id_to_ep_rank_array.shape, (3, 64, 1))
self.assertEqual(manager.model_expert_in_rank_num_list.shape, (3, 64))
# Verify process and thread are started
mock_process.assert_called_once()
mock_thread.assert_called_once()
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
def test_init_with_redundant_experts(self, mock_thread, mock_process, mock_get_logger):
"""Test initialization with redundant experts"""
# Set up redundant experts
self.fd_config.eplb_config.redundant_experts_num = 16
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=8, fd_config=self.fd_config, ipc_signal_suffix=0)
# Verify with redundant experts
self.assertEqual(manager.num_replicas, 80) # 64 + 16 redundant
self.assertEqual(manager.model_ep_rank_to_expert_id_list.shape, (3, 80))
self.assertEqual(manager.model_expert_id_to_ep_rank_array.shape, (3, 64, 17)) # 16 redundant + 1
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
def test_get_ep_rank_to_expert_id_list(self, mock_thread, mock_process, mock_get_logger):
"""Test get_ep_rank_to_expert_id_list method"""
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Set some test data
manager.model_ep_rank_to_expert_id_list = np.array([[0, 1, 2, 3]])
manager.model_expert_id_to_ep_rank_array = np.array([[[0], [1], [2], [3]]])
manager.model_expert_in_rank_num_list = np.array([[1, 1, 1, 1]])
result = manager.get_ep_rank_to_expert_id_list()
self.assertEqual(len(result), 3)
np.testing.assert_array_equal(result[0], np.array([[0, 1, 2, 3]]))
np.testing.assert_array_equal(result[1], np.array([[[0], [1], [2], [3]]]))
np.testing.assert_array_equal(result[2], np.array([[1, 1, 1, 1]]))
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
def test_caculate_expert_rank_table(self, mock_thread, mock_process, mock_get_logger):
"""Test caculate_expert_rank_table method"""
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Set up test data
manager.model_tokens_per_expert_stats_list = np.array([[10, 20, 30, 40], [5, 15, 25, 35]])
# Mock the rebalance_experts function
with patch("fastdeploy.eplb.experts_manager.rebalance_experts") as mock_rebalance:
np_array1 = np.random.randint(0, 100, size=(3, 64))
np_array2 = np.random.randint(0, 100, size=(3, 64, 1))
np_array3 = np.random.randint(0, 100, size=(3, 64))
mock_rebalance.return_value = (
np_array1, # phy2log
np_array2, # log2phy
np_array3, # logcnt
)
manager.caculate_expert_rank_table(is_init=True)
# Verify that rebalance_experts was called with correct parameters
mock_rebalance.assert_called_once()
# Verify that arrays are updated
np.testing.assert_array_equal(manager.model_ep_rank_to_expert_id_list, np_array1)
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
@patch("fastdeploy.eplb.experts_manager.IPCSignal")
def test_update_weight_from_disk(self, mock_ipc_signal, mock_thread, mock_process, mock_get_logger):
"""Test update_weight_from_disk method"""
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Mock IPCSignal
mock_ipc_instance = MagicMock()
mock_ipc_signal.return_value = mock_ipc_instance
manager.update_weight_from_disk_result = MagicMock()
# Mock parent connections
manager.parent_mg_conn = MagicMock()
manager.parent_data_conn = MagicMock()
manager.parent_data_conn.recv.return_value = {"result": True, "weights": ["weight1", "weight2"]}
# Set up test data
manager.last_model_ep_rank_to_expert_id_list = np.array([[0, 1, 2, 3]])
manager.model_ep_rank_to_expert_id_list = np.array([[1, 2, 3, 4]])
with patch("time.time", return_value=1000):
manager.update_weight_from_disk()
# Verify that data was sent and received
manager.parent_mg_conn.send.assert_called_once()
manager.parent_data_conn.recv.assert_called_once()
# Verify that tensor_infos was set
self.assertEqual(manager.tensor_infos, ["weight1", "weight2"])
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
@patch("fastdeploy.eplb.experts_manager.requests.post")
def test_allgather_expert_token_stats(self, mock_requests, mock_thread, mock_process, mock_get_logger):
"""Test allgather_expert_token_stats method"""
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Set up test addresses
manager.dp_rank_address = ["127.0.0.1:8000", "127.0.0.1:8001"]
# Mock successful responses
mock_response1 = MagicMock()
mock_response1.status_code = 200
mock_response1.json.return_value = {"data": np.random.randint(0, 100, size=(3, 64))} # 2 layers, 2 experts
mock_response2 = MagicMock()
mock_response2.status_code = 200
mock_response2.json.return_value = {"data": np.random.randint(0, 100, size=(3, 64))} # 2 layers, 2 experts
mock_requests.side_effect = [mock_response1, mock_response2]
# Update model config for this test
manager.num_hidden_layers = 3
manager.num_logical_experts = 64
manager.dp_rank_address = []
result = manager.allgather_expert_token_stats()
self.assertTrue(result)
# Verify that stats were accumulated
expected_stats = np.zeros((3, 64))
np.testing.assert_array_equal(manager.model_tokens_per_expert_stats_list, expected_stats)
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
@patch("fastdeploy.eplb.experts_manager.requests.post")
def test_broadcast_expert_token_stats(self, mock_requests, mock_thread, mock_process, mock_get_logger):
"""Test broadcast_expert_token_stats method"""
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Set up test addresses
manager.dp_rank_address = ["127.0.0.1:8000", "127.0.0.1:8001"]
# Mock successful responses
mock_response1 = MagicMock()
mock_response1.status_code = 200
mock_response2 = MagicMock()
mock_response2.status_code = 200
mock_requests.side_effect = [mock_response1, mock_response2]
result = manager.broadcast_expert_token_stats()
self.assertTrue(result)
self.assertEqual(mock_requests.call_count, 2)
@patch("fastdeploy.eplb.experts_manager.get_logger")
@patch("fastdeploy.eplb.experts_manager.Process")
@patch("fastdeploy.eplb.experts_manager.threading.Thread")
@patch("fastdeploy.eplb.experts_manager.requests.post")
def test_allgather_load_weight_result(self, mock_requests, mock_thread, mock_process, mock_get_logger):
"""Test allgather_load_weight_result method"""
mock_logger = MagicMock()
mock_get_logger.return_value = mock_logger
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
# Set up test addresses
manager.dp_rank_address = ["127.0.0.1:8000", "127.0.0.1:8001"]
# Mock successful responses with mixed results
mock_response1 = MagicMock()
mock_response1.status_code = 200
mock_response1.json.return_value = {"data": [1, 1]} # Two successful loads
mock_response2 = MagicMock()
mock_response2.status_code = 200
mock_response2.json.return_value = {"data": [-1, 1]} # One failed, one successful
mock_requests.side_effect = [mock_response1, mock_response2]
all_success, exist_fail = manager.allgather_load_weight_result()
self.assertFalse(all_success) # Not all successful due to failure
self.assertTrue(exist_fail) # There is a failure
def test_edge_cases(self):
"""Test edge cases"""
# Test with empty addresses
with (
patch("fastdeploy.eplb.experts_manager.get_logger"),
patch("fastdeploy.eplb.experts_manager.Process"),
patch("fastdeploy.eplb.experts_manager.threading.Thread"),
):
manager = RedundantExpertManager(rank=0, ep_size=32, fd_config=self.fd_config, ipc_signal_suffix=0)
manager.dp_rank_address = []
# Test allgather with empty addresses
result = manager.allgather_expert_token_stats()
self.assertTrue(result)
manager.dp_rank_address = []
# Test broadcast with empty addresses
result = manager.broadcast_expert_token_stats()
self.assertTrue(result) # Should return True for empty list
if __name__ == "__main__":
unittest.main()