mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [Feature] support chunked moe * update * update * fix and add test * update * fix conflict and modity test * fix fused_moe * fix fused_moe * fix docstring * fix * fix typo * fix test * fix * fix * fix test * fix test
184 lines
5.5 KiB
Python
184 lines
5.5 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from unittest.mock import Mock
|
|
|
|
import paddle
|
|
import paddle.distributed as dist
|
|
from paddle.distributed import fleet
|
|
|
|
from fastdeploy.config import MoEPhase
|
|
from fastdeploy.model_executor.layers.moe import FusedMoE
|
|
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
|
|
|
|
|
|
class MockStructuredOutputsConfig:
|
|
logits_processors = []
|
|
|
|
|
|
class MockModelConfig:
|
|
max_model_len = 10
|
|
pad_token_id = 0
|
|
eos_tokens_lens = 1
|
|
eos_token_id = 0
|
|
temperature = 1.0
|
|
penalty_score = 1.0
|
|
frequency_score = 1.0
|
|
min_length = 1
|
|
vocab_size = 1
|
|
top_p = 1.0
|
|
presence_score = 1.0
|
|
max_stop_seqs_num = 5
|
|
stop_seqs_max_len = 2
|
|
head_dim = 128
|
|
model_type = ["mock"]
|
|
moe_phase = MoEPhase(phase="prefill")
|
|
hidden_size = 1536
|
|
|
|
|
|
class MockCacheConfig:
|
|
block_size = 64
|
|
total_block_num = 256
|
|
kv_cache_ratio = 0.9
|
|
enc_dec_block_num = 2
|
|
|
|
|
|
class MockFDConfig:
|
|
class ParallelConfig:
|
|
enable_expert_parallel = True
|
|
enable_chunked_moe = True
|
|
chunked_moe_size = 2
|
|
max_moe_num_chunk = 1
|
|
moe_num_chunk = 1
|
|
use_ep = True
|
|
use_sequence_parallel_moe = False
|
|
|
|
class SchedulerConfig:
|
|
name = "default"
|
|
splitwise_role = "mixed"
|
|
max_num_seqs = 2
|
|
|
|
parallel_config = ParallelConfig()
|
|
scheduler_config = SchedulerConfig()
|
|
structured_outputs_config = MockStructuredOutputsConfig()
|
|
model_config = MockModelConfig()
|
|
|
|
|
|
class MockAttentionBackend:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def init_attention_metadata(self, forward_meta):
|
|
pass
|
|
|
|
|
|
class MockQuantMethod:
|
|
def apply(self, layer, x, gate):
|
|
return x
|
|
|
|
|
|
class TestChunkedMoE(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
paddle.seed(2025)
|
|
|
|
strategy = fleet.DistributedStrategy()
|
|
strategy.hybrid_configs = {
|
|
"dp_degree": 1,
|
|
"mp_degree": 2,
|
|
"pp_degree": 1,
|
|
"sharding_degree": 1,
|
|
}
|
|
|
|
fleet.init(is_collective=True, strategy=strategy)
|
|
|
|
self.model_runner = self.setup_model_runner()
|
|
self.fused_moe = self.setup_fused_moe()
|
|
|
|
def setup_model_runner(self):
|
|
"""Helper method to setup GPUModelRunner with different configurations"""
|
|
mock_fd_config = MockFDConfig()
|
|
|
|
mock_model_config = MockModelConfig()
|
|
mock_cache_config = MockCacheConfig()
|
|
|
|
model_runner = GPUModelRunner.__new__(GPUModelRunner)
|
|
model_runner.fd_config = mock_fd_config
|
|
model_runner.model_config = mock_model_config
|
|
model_runner.cache_config = mock_cache_config
|
|
model_runner.attn_backends = [MockAttentionBackend()]
|
|
model_runner.enable_mm = True
|
|
model_runner.cudagraph_only_prefill = False
|
|
model_runner.use_cudagraph = False
|
|
model_runner.speculative_decoding = False
|
|
model_runner._init_share_inputs(mock_fd_config.scheduler_config.max_num_seqs)
|
|
model_runner.share_inputs["caches"] = None
|
|
|
|
if dist.get_rank() == 0:
|
|
model_runner.share_inputs["ids_remove_padding"] = paddle.ones([10])
|
|
else:
|
|
model_runner.share_inputs["ids_remove_padding"] = paddle.ones([1])
|
|
|
|
return model_runner
|
|
|
|
def setup_fused_moe(self):
|
|
mock_fd_config = MockFDConfig()
|
|
|
|
fused_moe = FusedMoE.__new__(FusedMoE)
|
|
fused_moe.ep_size = 2
|
|
fused_moe.tp_size = 1
|
|
fused_moe.reduce_results = True
|
|
|
|
fused_moe.fd_config = mock_fd_config
|
|
fused_moe.quant_method = MockQuantMethod()
|
|
return fused_moe
|
|
|
|
def run_model_runner(self):
|
|
self.model_runner.initialize_forward_meta()
|
|
|
|
assert self.model_runner.fd_config.parallel_config.max_moe_num_chunk == 5, (
|
|
f"chunk size is 2, max token_num is 10, max_moe_num_chunk should be 5, "
|
|
f"but got {self.model_runner.fd_config.parallel_config.max_moe_num_chunk}"
|
|
)
|
|
if dist.get_rank() == 0:
|
|
assert self.model_runner.fd_config.parallel_config.moe_num_chunk == 5, (
|
|
f"chunk size is 2, token_num is 10, moe_num_chunk in rank 0 should be 5"
|
|
f"but got {self.model_runner.fd_config.parallel_config.moe_num_chunk}"
|
|
)
|
|
else:
|
|
assert self.model_runner.fd_config.parallel_config.moe_num_chunk == 1, (
|
|
f"chunk size is 2, token_num is 1, moe_num_chunk in rank 1 should be 1"
|
|
f", but got {self.model_runner.fd_config.parallel_config.moe_num_chunk}"
|
|
)
|
|
|
|
def run_fused_moe(self):
|
|
gate = Mock()
|
|
if dist.get_rank() == 0:
|
|
x = paddle.ones([10])
|
|
else:
|
|
x = paddle.ones([1])
|
|
|
|
out = self.fused_moe.forward(x, gate)
|
|
assert out.shape == x.shape
|
|
|
|
def test_case(self):
|
|
# check whether dist collected max_moe_num_chunk is correct.
|
|
self.run_model_runner()
|
|
# check the forward method of chunked MoE.
|
|
self.run_fused_moe()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|