Files
FastDeploy/tests/layers/test_speculative_sampler.py
GoldPancake 1f3ce65b58
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Feature] support mtp distribution equivalence verification (#4699)
2025-10-31 11:45:04 +08:00

228 lines
9.0 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from unittest.mock import Mock
import paddle
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
)
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import (
MTPSampler,
SpeculativeSampler,
)
def _create_fake_logits(batch_size: int, vocab_size: int) -> paddle.Tensor:
fake_logits = paddle.rand(shape=[batch_size, vocab_size], dtype="float32")
return fake_logits
def _create_penalty_tensor(batch_size: int, penalty_value: float) -> paddle.Tensor:
return paddle.full(shape=[batch_size, 1], fill_value=penalty_value, dtype="float32")
def _create_tokens_tensor(
batch_size: int,
max_seq_len: int,
) -> paddle.Tensor:
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len], fill_value=-1, dtype="int64")
return pre_token_ids
def _create_default_sampling_metadata(
batch_size: int,
min_seq_len: int,
max_seq_len: int,
max_num_logprobs: int = None,
) -> SamplingMetadata:
fake_sampling_metadata = SamplingMetadata(
temperature=paddle.full(shape=[batch_size, 1], fill_value=0.9, dtype="float32"),
top_p=paddle.full(shape=[batch_size, 1], fill_value=0.7, dtype="float32"),
top_k=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int32"),
prompt_ids=paddle.full(shape=[batch_size, max_seq_len], fill_value=0, dtype="int64"),
prompt_lens=paddle.full(shape=[batch_size, 1], fill_value=5, dtype="int64"),
step_idx=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64"),
pre_token_ids=_create_tokens_tensor(batch_size, max_seq_len),
frequency_penalties=_create_penalty_tensor(batch_size, 0.0),
presence_penalties=_create_penalty_tensor(batch_size, 0.0),
repetition_penalties=_create_penalty_tensor(batch_size, 1.0),
min_dec_lens=paddle.full(shape=[batch_size, 1], fill_value=min_seq_len, dtype="int64"),
bad_words_token_ids=paddle.full(shape=[batch_size], fill_value=-1, dtype="int64"),
eos_token_ids=paddle.full(shape=[batch_size], fill_value=-2, dtype="int64"),
min_p=paddle.randn([batch_size]),
seed=paddle.to_tensor([[2025]]),
)
if max_num_logprobs is not None:
fake_sampling_metadata.max_num_logprobs = max_num_logprobs
return fake_sampling_metadata
def _create_fd_config(max_model_len):
model_config: Mock = Mock()
model_config.max_model_len = max_model_len
speculative_config = SpeculativeConfig({})
graph_opt_config = GraphOptimizationConfig({})
scheduler_config = SchedulerConfig({})
parallel_config = ParallelConfig({})
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
fd_config = FDConfig(
model_config=model_config,
speculative_config=speculative_config,
graph_opt_config=graph_opt_config,
scheduler_config=scheduler_config,
parallel_config=parallel_config,
cache_config=cache_config,
)
return fd_config
def _create_share_inputs(max_num_seqs, max_draft_token_num, max_model_len, vocab_size):
share_inputs = {}
share_inputs["seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 2, dtype="int32")
share_inputs["output_cum_offsets"] = paddle.concat(
[(max_model_len - share_inputs["seq_lens_this_time"][i]) * i for i in range(max_num_seqs)]
)
share_inputs["output_padding_offset"] = paddle.repeat_interleave(share_inputs["output_cum_offsets"], 2)
share_inputs["accept_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1], fill_value=0, dtype="int64"
)
share_inputs["accept_num"] = paddle.full(shape=[max_num_seqs], fill_value=1, dtype="int32")
share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 1, dtype="int64")
share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 2, dtype="int32")
share_inputs["draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1], fill_value=0, dtype="int64"
)
share_inputs["max_dec_len"] = paddle.full([max_num_seqs, 1], max_model_len, dtype="int64")
share_inputs["is_block_step"] = paddle.full([max_num_seqs], False, dtype="bool")
share_inputs["actual_draft_token_num"] = paddle.full(
shape=[max_num_seqs], fill_value=max_draft_token_num, dtype="int32"
)
share_inputs["batch_token_num"] = paddle.where(
share_inputs["seq_lens_encoder"] != 0,
paddle.ones_like(share_inputs["seq_lens_encoder"]),
share_inputs["seq_lens_this_time"],
).squeeze(1)
share_inputs["next_token_num"] = paddle.full(shape=[max_num_seqs], fill_value=0, dtype="int32")
share_inputs["cu_batch_token_offset"] = paddle.concat(
[paddle.to_tensor([0]), paddle.cumsum(share_inputs["accept_num"])]
).astype("int32")
share_inputs["cu_next_token_offset"] = paddle.full(shape=[max_num_seqs + 1], fill_value=0, dtype="int32")
share_inputs["substep"] = 0
share_inputs["draft_logits"] = paddle.full(
[max_num_seqs * (max_draft_token_num + 1), vocab_size], -1, dtype="float32"
)
return share_inputs
def test_speculative_sampler():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampler = SpeculativeSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_speculative_sampler_logprobs():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
sampling_metadata.share_inputs = share_inputs
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
logprobs_mode_list = ["raw_logprobs", "raw_logits"]
for logprobs_mode in logprobs_mode_list:
fd_config.model_config.logprobs_mode = logprobs_mode
sampler = SpeculativeSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_mtp_sampler():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampler = MTPSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
def test_mtp_sampler_logprobs():
batch_size = 32
vocab_size = 1024
min_seq_len = 1
max_seq_len = 1024
max_model_len = 1024
max_draft_token_num = 1
fd_config = _create_fd_config(max_model_len)
share_inputs = _create_share_inputs(batch_size, max_draft_token_num, max_model_len, vocab_size)
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len, max_num_logprobs=0)
sampling_metadata.share_inputs = share_inputs
logits = _create_fake_logits(batch_size * (max_draft_token_num + 1), vocab_size)
logprobs_mode_list = ["raw_logprobs", "raw_logits"]
for logprobs_mode in logprobs_mode_list:
fd_config.model_config.logprobs_mode = logprobs_mode
sampler = MTPSampler(fd_config)
sampler(logits, sampling_metadata, max_model_len, share_inputs)
if __name__ == "__main__":
test_speculative_sampler()
test_speculative_sampler_logprobs()
test_mtp_sampler()
test_mtp_sampler_logprobs()