Files
FastDeploy/tests/layers/test_attention_layer.py
2025-12-09 14:17:30 +08:00

403 lines
16 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import paddle
import paddle.device.cuda.graphs as graphs
from fastdeploy.config import (
CacheConfig,
CommitConfig,
DeviceConfig,
EarlyStopConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
SchedulerConfig,
SpeculativeConfig,
)
from fastdeploy.model_executor.forward_meta import ForwardMeta, ForwardMode
from fastdeploy.model_executor.layers.attention import (
AttentionBackend,
get_attention_backend,
)
from fastdeploy.model_executor.layers.attention.append_attn_backend import (
allocate_launch_related_buffer,
)
from fastdeploy.model_executor.layers.quantization.mix_quant import MixQuantConfig
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_Attention
from fastdeploy.model_executor.ops.gpu import get_padding_offset
if "nvidia graphics device" in paddle.device.cuda.get_device_name().lower():
# (ZKK): CI machine.
os.environ.setdefault("DG_NVCC_OVERRIDE_CPP_STANDARD", "17")
class TestAttentionPerformance(unittest.TestCase):
def setUp(self):
"""
Set up the testing environment before each test.
This includes creating configurations, initializing the model,
and preparing a random state dictionary.
"""
print("Setting up test environment...")
paddle.set_device("gpu")
paddle.set_default_dtype("bfloat16")
self.model_dir = self.create_model_config_json()
self.fd_config = self.create_fd_config_from_model_path(self.model_dir, tensor_parallel_size=1)
self.fd_config.parallel_config.tp_group = [0]
# Initialize Attention Layer
attn_cls = get_attention_backend()
self.attn_backend = attn_cls(
self.fd_config,
kv_num_heads=self.fd_config.model_config.num_key_value_heads
// self.fd_config.parallel_config.tensor_parallel_size,
num_heads=self.fd_config.model_config.num_attention_heads
// self.fd_config.parallel_config.tensor_parallel_size,
head_dim=self.fd_config.model_config.head_dim,
encoder_block_shape_q=64,
decoder_block_shape_q=16,
)
num_layers = self.fd_config.model_config.num_hidden_layers
self.attention_layer = [None] * num_layers
for i in range(num_layers):
self.attention_layer[i] = Ernie4_5_Attention(self.fd_config, layer_id=i, prefix="test_layer")
state_dict = self.create_random_attention_state_dict(self.fd_config, prefix="test_layer")
self.attention_layer[i].load_state_dict(state_dict)
def attn_forward(forward_meta, hidden_states):
for i in range(num_layers):
hidden_states = self.attention_layer[i](forward_meta, hidden_states)
return hidden_states
self.attn_forward = attn_forward
self.cache_quant_type_str = getattr(self.attention_layer[0].attn, "cache_quant_type_str", "none")
print("===== Initialization Complete =====")
def tearDown(self):
"""
Clean up the environment after each test.
"""
print("\nTearing down test environment...")
if os.path.exists(self.model_dir):
shutil.rmtree(self.model_dir)
print(f"Successfully removed temporary directory: {self.model_dir}")
# region Helper Functions
def create_model_config_json(self) -> str:
"""
Creates a temporary directory and writes the model configuration to a 'config.json' file.
"""
config_dict = {
"architectures": ["Ernie4_5_MoeForCausalLM"],
"dtype": "bfloat16",
"max_position_embeddings": 131072,
"max_model_len": 131072,
"head_dim": 128,
"hidden_size": 8192,
"num_attention_heads": 64,
"num_key_value_heads": 8,
"num_hidden_layers": 2,
}
model_dir = tempfile.mkdtemp(prefix="tmp_model_config_")
config_path = os.path.join(model_dir, "config.json")
with open(config_path, "w") as f:
json.dump(config_dict, f, indent=4)
print(f"Successfully created config.json at: {config_path}")
return model_dir
def create_fd_config_from_model_path(self, model_path, tensor_parallel_size=1):
"""Creates a complete FDConfig from a model path."""
model_args = {"model": model_path, "dtype": "bfloat16"}
model_config = ModelConfig(model_args)
model_config.tensor_parallel_size = tensor_parallel_size
parallel_config = ParallelConfig({"tensor_parallel_size": tensor_parallel_size, "data_parallel_size": 1})
cache_config = CacheConfig(
{
"block_size": 64,
"model_cfg": model_config,
"tensor_parallel_size": tensor_parallel_size,
}
)
return FDConfig(
model_config=model_config,
cache_config=cache_config,
parallel_config=parallel_config,
scheduler_config=SchedulerConfig({}),
load_config=LoadConfig({}),
quant_config=MixQuantConfig(
dense_quant_type="block_wise_fp8",
moe_quant_type="block_wise_fp8",
kv_cache_quant_type="float8_e4m3fn",
# kv_cache_quant_type=None,
),
graph_opt_config=GraphOptimizationConfig({}),
commit_config=CommitConfig(),
device_config=DeviceConfig({}),
speculative_config=SpeculativeConfig({}),
early_stop_config=EarlyStopConfig({}),
)
def create_random_attention_state_dict(self, fd_config: FDConfig, prefix: str) -> dict:
"""
Creates a state_dict with random weights for the Ernie4_5_Attention layer.
"""
hidden_size = fd_config.model_config.hidden_size
tp_size = fd_config.parallel_config.tensor_parallel_size
tensor_dtype = getattr(paddle, fd_config.model_config.dtype)
q_dims = fd_config.model_config.num_attention_heads * fd_config.model_config.head_dim
kv_dims = fd_config.model_config.num_key_value_heads * fd_config.model_config.head_dim
total_output_dim = q_dims + 2 * kv_dims
qkv_proj_output_dim_tp = total_output_dim // tp_size
qkv_weight_shape = [hidden_size, qkv_proj_output_dim_tp]
o_proj_input_dim = fd_config.model_config.num_attention_heads * fd_config.model_config.head_dim
o_proj_input_dim_tp = o_proj_input_dim // tp_size
o_proj_weight_shape = [o_proj_input_dim_tp, hidden_size]
qkv_weight = paddle.randn(qkv_weight_shape, dtype=tensor_dtype)
o_proj_weight = paddle.randn(o_proj_weight_shape, dtype=tensor_dtype)
kv_num_heads_tp = fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_size
activation_scale_shape = [kv_num_heads_tp]
activation_scale_tensor = paddle.full(shape=activation_scale_shape, fill_value=1.0, dtype=tensor_dtype)
state_dict = {
f"{prefix}.qkv_proj.weight": qkv_weight,
f"{prefix}.o_proj.weight": o_proj_weight,
f"{prefix}.cachek_matmul.activation_scale": activation_scale_tensor,
f"{prefix}.cachev_matmul.activation_scale": activation_scale_tensor,
}
return state_dict
def create_forward_meta(
self,
batch_size: int,
seq_len: int,
mode: ForwardMode,
fd_config: FDConfig,
attn_backend: AttentionBackend,
cache_quant_type_str: str = "none",
) -> ForwardMeta:
"""
Creates a high-fidelity ForwardMeta object.
"""
if mode == ForwardMode.EXTEND:
seq_lens_encoder = paddle.full([batch_size], seq_len, dtype="int32")
seq_lens_decoder = paddle.zeros([batch_size], dtype="int32")
seq_lens_this_time = seq_lens_encoder
elif mode == ForwardMode.DECODE:
seq_lens_encoder = paddle.zeros([batch_size], dtype="int32")
seq_lens_decoder = paddle.full([batch_size], seq_len, dtype="int32")
seq_lens_this_time = paddle.ones([batch_size], dtype="int32")
else:
raise ValueError(f"Unsupported ForwardMode: {mode}")
attn_backend_buffers = allocate_launch_related_buffer(
max_batch_size=batch_size,
max_model_len=fd_config.model_config.max_model_len,
encoder_block_shape_q=64,
decoder_block_shape_q=16,
decoder_step_token_num=fd_config.speculative_config.num_speculative_tokens + 1,
num_heads=fd_config.model_config.num_attention_heads,
kv_num_heads=fd_config.model_config.num_key_value_heads,
block_size=fd_config.cache_config.block_size,
)
block_size = fd_config.cache_config.block_size
max_model_len = fd_config.model_config.max_model_len
max_blocks_per_seq = (max_model_len + block_size - 1) // block_size
allocated_blocks_per_seq = seq_len // block_size + 1
allocated_num_blocks = allocated_blocks_per_seq * batch_size
head_dim = fd_config.model_config.head_dim
kv_num_heads_tp = fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_size
num_layers = fd_config.model_config.num_hidden_layers
cache_type = fd_config.model_config.dtype
if cache_quant_type_str != "none":
cache_type = "uint8"
cache_shape = (allocated_num_blocks, kv_num_heads_tp, block_size, head_dim)
scale_shape = (allocated_num_blocks, kv_num_heads_tp, block_size)
caches = []
for _ in range(num_layers):
key_cache = paddle.randint(0, 255, shape=cache_shape, dtype="int32").cast(cache_type)
value_cache = paddle.randint(0, 255, shape=cache_shape, dtype="int32").cast(cache_type)
caches.extend([key_cache, value_cache])
if cache_quant_type_str == "block_wise_fp8":
key_cache_scale = paddle.rand(shape=scale_shape, dtype=fd_config.model_config.dtype)
value_cache_scale = paddle.rand(shape=scale_shape, dtype=fd_config.model_config.dtype)
caches.extend([key_cache_scale, value_cache_scale])
block_tables = paddle.zeros(shape=(batch_size, max_blocks_per_seq), dtype="int32")
for i in range(batch_size):
for j in range(allocated_blocks_per_seq):
block_tables[i, j] = i * allocated_blocks_per_seq + j
tmp_position_ids = paddle.arange(fd_config.model_config.max_model_len).reshape((1, -1))
rope_emb = get_rope(
rotary_dim=fd_config.model_config.head_dim,
position_ids=tmp_position_ids,
base=fd_config.model_config.rope_theta,
model_config=fd_config.model_config,
partial_rotary_factor=fd_config.model_config.partial_rotary_factor,
)
input_ids = paddle.zeros([batch_size, seq_len if mode == ForwardMode.EXTEND else 1], dtype="int64")
token_num = np.sum(seq_lens_this_time)
ids_remove_padding, batch_id_per_token, cu_seqlens_q, cu_seqlens_k = get_padding_offset(
input_ids, seq_lens_this_time, token_num
)
forward_meta = ForwardMeta(
ids_remove_padding=ids_remove_padding,
seq_lens_encoder=seq_lens_encoder,
seq_lens_decoder=seq_lens_decoder,
seq_lens_this_time=seq_lens_this_time,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
batch_id_per_token=batch_id_per_token,
block_tables=block_tables,
caches=caches,
rotary_embs=rope_emb,
step_use_cudagraph=False,
attn_backend=attn_backend,
forward_mode=ForwardMode.MIXED,
attn_mask=None,
attn_mask_offsets=None,
**attn_backend_buffers,
)
hidden_states = paddle.randn([token_num, self.fd_config.model_config.hidden_size], dtype="bfloat16")
return forward_meta, hidden_states
def test_decode_performance_with_prefill(self):
# Test parameters
test_steps = 100
# prefill_batch_size = 1
# prefill_seq_len = 4096
# prefill_hidden_states = paddle.randn(
# [prefill_batch_size * prefill_seq_len, self.fd_config.model_config.hidden_size],
# dtype=act_tensor_dtype,
# )
# forward_meta = self.create_forward_meta(
# batch_size=prefill_batch_size,
# seq_len=prefill_seq_len,
# mode=ForwardMode.EXTEND,
# fd_config=self.fd_config,
# attn_backend=self.attn_backend,
# cache_quant_type_str=self.cache_quant_type_str,
# )
# self.attn_backend.init_attention_metadata(forward_meta)
# self.attn_forward(forward_meta, prefill_hidden_states)
# paddle.device.synchronize()
# import paddle.profiler as profiler
# p = profiler.Profiler(
# targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
# on_trace_ready=profiler.export_chrome_tracing("./profile_log"),
# )
# p.start()
# p.step()
# start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
# end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
# for i in range(test_steps):
# start_events[i].record()
# self.attn_forward(forward_meta, prefill_hidden_states)
# end_events[i].record()
# paddle.device.synchronize()
# times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:]
# print(times[-5:])
# return
# p.stop()
# p = profiler.Profiler(
# targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
# on_trace_ready=profiler.export_chrome_tracing("./profile_log"),
# )
# p.start()
# p.step()
for decode_batch_size in [32, 16, 8, 4, 2]:
forward_meta, hidden_states = self.create_forward_meta(
batch_size=decode_batch_size,
seq_len=36 * 1024,
mode=ForwardMode.DECODE,
fd_config=self.fd_config,
attn_backend=self.attn_backend,
cache_quant_type_str=self.cache_quant_type_str,
)
self.attn_backend.init_attention_metadata(forward_meta)
paddle.device.synchronize()
# 必须要先预热一次!因为预处理被放到了第一层再做了!
self.attn_forward(forward_meta, hidden_states)
attn_cuda_graphs = graphs.CUDAGraph()
attn_cuda_graphs.capture_begin()
self.attn_forward(forward_meta, hidden_states)
attn_cuda_graphs.capture_end()
start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
for i in range(test_steps):
start_events[i].record()
attn_cuda_graphs.replay()
end_events[i].record()
paddle.device.synchronize()
times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:]
print(times[-5:])
del forward_meta
# p.stop()
if __name__ == "__main__":
unittest.main()