mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 88297240e7
			
		
	
	88297240e7
	
	
	
		
			
			* [feat] completion api supports passing input token ids in either `prompt` or `prompt_token_ids` * [fix] update comment * [fix] fix type error * [test] add a unittest file for serving api test * [test] try to fix ci error * [chore] rename test function names * [test] try to fix ci error * [test] try to fix ci error * [test] add tests for qwen
		
			
				
	
	
		
			558 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import os
 | |
| 
 | |
| import numpy as np
 | |
| from paddleformers.generation import GenerationConfig
 | |
| 
 | |
| from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
 | |
| from fastdeploy.input.text_processor import BaseDataProcessor
 | |
| from fastdeploy.utils import data_processor_logger
 | |
| 
 | |
| _SAMPLING_EPS = 1e-5
 | |
| 
 | |
| 
 | |
| class Ernie4_5Processor(BaseDataProcessor):
 | |
|     """
 | |
|     初始化模型实例。
 | |
| 
 | |
|     Args:
 | |
|         model_name_or_path (str): 模型名称或路径。
 | |
| 
 | |
|     Attributes:
 | |
|         model_name_or_path (str): 存储模型名称或路径。
 | |
|         decode_status (dict): 存储解码状态信息。
 | |
|         tokenizer (object): 存储分词器实例。
 | |
|         eos_token_ids (list): 存储结束符号的token ID列表。
 | |
|         eos_token_id_len (int): 存储结束符号的token ID列表的长度。
 | |
|         pad_token_id (int): 存储填充符号的token ID。
 | |
|     """
 | |
| 
 | |
|     def __init__(self, model_name_or_path, reasoning_parser_obj=None, tool_parser_obj=None):
 | |
| 
 | |
|         self.model_name_or_path = model_name_or_path
 | |
|         data_processor_logger.info(f"model_name_or_path: {model_name_or_path}")
 | |
| 
 | |
|         # Generation config
 | |
|         try:
 | |
|             self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
 | |
|         except Exception as e:
 | |
|             data_processor_logger.warning(
 | |
|                 f"Can't find generation config, so it will not use "
 | |
|                 f"generation_config field in the model config, details={e}"
 | |
|             )
 | |
|             self.generation_config = None
 | |
| 
 | |
|         self.decode_status = dict()
 | |
|         self.tool_parser_dict = dict()
 | |
|         self.thinking_parser_dict = dict()
 | |
|         self._load_tokenizer()
 | |
|         data_processor_logger.info(
 | |
|             f"tokenizer information: bos_token is {self.tokenizer.bos_token} \
 | |
|                                    {self.tokenizer.bos_token_id}, \
 | |
|                                    eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
 | |
|         )
 | |
|         from paddleformers.trl.llm_utils import get_eos_token_id
 | |
| 
 | |
|         self.eos_token_ids = get_eos_token_id(self.tokenizer, self.generation_config)
 | |
|         self.eos_token_id_len = len(self.eos_token_ids)
 | |
|         self.pad_token_id = self.get_pad_id()
 | |
|         self.reasoning_parser = None
 | |
|         self.tool_parser_obj = tool_parser_obj
 | |
|         if reasoning_parser_obj:
 | |
|             self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
 | |
| 
 | |
|     def process_request(self, request, max_model_len=None, **kwargs):
 | |
|         """
 | |
|         Preprocess the request
 | |
| 
 | |
|         Args:
 | |
|             request (Dict): may contain text and messages fields
 | |
| 
 | |
|         Returns:
 | |
|             bool: Whether preprocessing is successful
 | |
|             str: error message
 | |
|         """
 | |
|         data_processor_logger.info(f"Start processing request: {request}")
 | |
|         request.chat_template = kwargs.get("chat_template")
 | |
|         request = self._apply_default_parameters(request)
 | |
|         if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0:
 | |
|             request.eos_token_ids = self.eos_token_ids
 | |
| 
 | |
|         # processing stop_sequences
 | |
|         stop_sequences = request.get("stop", [])
 | |
|         if stop_sequences is not None and len(stop_sequences) != 0:
 | |
|             stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
 | |
|             request.set("stop_token_ids", stop_seqs)
 | |
|             request.set("stop_seqs_len", stop_seqs_len)
 | |
| 
 | |
|         # processing bad_words
 | |
|         bad_words = request.get("bad_words")
 | |
|         bad_words_token_ids = request.get("bad_words_token_ids")
 | |
|         if bad_words:
 | |
|             bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
 | |
|             request["bad_words_token_ids"] = bad_words_token_ids
 | |
| 
 | |
|         # processing prompt_token_ids
 | |
|         if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
 | |
|             if request.prompt is not None:
 | |
|                 # prompt = request.prompt if request.prompt is not None else request.messages[0]
 | |
|                 prompt = request.prompt
 | |
|                 assert isinstance(prompt, str) or (
 | |
|                     isinstance(prompt, list) and all([isinstance(t, int) for t in prompt])
 | |
|                 ), f"prompt must be a string or a list of integers, but got {type(prompt)}"
 | |
| 
 | |
|                 if isinstance(prompt, list):  # if prompt is a token id list
 | |
|                     request.prompt_token_ids = prompt
 | |
|                 else:
 | |
|                     tokens = self.tokenizer.tokenize(prompt)
 | |
|                     token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | |
|                     request.prompt_token_ids = token_ids
 | |
|                     data_processor_logger.debug(
 | |
|                         f"request_ids: {request.request_id}, prompt: {prompt}, tokens: {tokens}, token_ids: {token_ids}"
 | |
|                     )
 | |
|             elif request.messages is not None:
 | |
|                 task = request.to_dict()
 | |
|                 chat_template_kwargs = kwargs.get("chat_template_kwargs")
 | |
|                 if chat_template_kwargs:
 | |
|                     if isinstance(chat_template_kwargs, dict):
 | |
|                         for k, v in chat_template_kwargs.items():
 | |
|                             if k not in task:
 | |
|                                 task[k] = v
 | |
|                     else:
 | |
|                         raise ValueError("Invalid input: chat_template_kwargs must be a dict")
 | |
|                 request.prompt_token_ids = self.messages2ids(task)
 | |
|             else:
 | |
|                 raise ValueError(f"The request should have `prompt_token_ids`, `prompt` or `messages`: {request}.")
 | |
| 
 | |
|         if len(request.prompt_token_ids) == 0:
 | |
|             raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
 | |
| 
 | |
|         # truncate prompts that exceed the length limit
 | |
|         if max_model_len is not None and len(request.prompt_token_ids) > max_model_len:
 | |
|             request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1]
 | |
|         if request.get("max_tokens") is None:
 | |
|             request.set("max_tokens", max(1, max_model_len - len(request.prompt_token_ids)))
 | |
|         if request.get("temperature") < _SAMPLING_EPS:
 | |
|             # zero temperature is equivalent to greedy sampling
 | |
|             request.set("temperature", 1)
 | |
|         if request.get("top_p") < _SAMPLING_EPS:
 | |
|             request.set("top_p", _SAMPLING_EPS)
 | |
|         if self.reasoning_parser and self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser":
 | |
|             request.enable_thinking = True
 | |
| 
 | |
|         data_processor_logger.info(f"Processed request: {request}")
 | |
|         return request
 | |
| 
 | |
|     def process_request_dict(self, request, max_model_len=None):
 | |
|         """
 | |
|         Preprocess the request
 | |
| 
 | |
|         Args:
 | |
|             request (Dict): may contain text and messages fields
 | |
| 
 | |
|         Returns:
 | |
|             bool: Whether preprocessing is successful
 | |
|             str: error message
 | |
|         """
 | |
|         data_processor_logger.info(f"Start processing request dict: {request}")
 | |
|         request = self._apply_default_parameters(request)
 | |
|         if not request.get("eos_token_ids"):
 | |
|             request["eos_token_ids"] = self.eos_token_ids
 | |
| 
 | |
|         # processing stop_sequences
 | |
|         stop_sequences = request.get("stop", [])
 | |
|         if stop_sequences:
 | |
|             stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
 | |
|             request["stop_token_ids"] = stop_seqs
 | |
|             request["stop_seqs_len"] = stop_seqs_len
 | |
| 
 | |
|         # processing bad_words
 | |
|         bad_words = request.get("bad_words")
 | |
|         bad_words_token_ids = request.get("bad_words_token_ids")
 | |
|         if bad_words:
 | |
|             bad_words_token_ids = self.update_bad_words(bad_words, bad_words_token_ids)
 | |
|             request["bad_words_token_ids"] = bad_words_token_ids
 | |
| 
 | |
|         # processing prompt_token_ids
 | |
|         if not request.get("prompt_token_ids"):
 | |
|             if request.get("prompt"):
 | |
|                 prompt = request.get("prompt")
 | |
|                 assert isinstance(prompt, str) or (
 | |
|                     isinstance(prompt, list) and all([isinstance(t, int) for t in prompt])
 | |
|                 ), f"prompt must be a string or a list of integers, but got {type(prompt)}"
 | |
|                 if isinstance(prompt, list):  # if prompt is a token id list
 | |
|                     request["prompt_token_ids"] = prompt
 | |
|                 else:
 | |
|                     request["text_after_process"] = prompt
 | |
|                     tokens = self.tokenizer.tokenize(prompt)
 | |
|                     token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | |
|                     request["prompt_token_ids"] = token_ids
 | |
|                     req_id = request.get("request_id", None)
 | |
|                     data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
 | |
|             elif request.get("messages"):
 | |
|                 chat_template_kwargs = request.get("chat_template_kwargs")
 | |
|                 if chat_template_kwargs:
 | |
|                     if isinstance(chat_template_kwargs, dict):
 | |
|                         for k, v in chat_template_kwargs.items():
 | |
|                             if k not in request:
 | |
|                                 request[k] = v
 | |
|                     else:
 | |
|                         raise ValueError("Invalid input: chat_template_kwargs must be a dict")
 | |
|                 request["prompt_token_ids"] = self.messages2ids(request)
 | |
|             else:
 | |
|                 raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
 | |
| 
 | |
|         if len(request["prompt_token_ids"]) == 0:
 | |
|             raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
 | |
| 
 | |
|         # truncate prompts that exceed the length limit
 | |
|         if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
 | |
|             request["prompt_token_ids"] = request["prompt_token_ids"][: max_model_len - 1]
 | |
|         if request.get("max_tokens") is None:
 | |
|             request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
 | |
|         if request.get("temperature") < _SAMPLING_EPS:
 | |
|             # zero temperature is equivalent to greedy sampling
 | |
|             request["temperature"] = 1
 | |
|         if request.get("top_p") < _SAMPLING_EPS:
 | |
|             request["top_p"] = _SAMPLING_EPS
 | |
|         if self.reasoning_parser and self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser":
 | |
|             request["enable_thinking"] = True
 | |
| 
 | |
|         data_processor_logger.info(f"Processed request dict: {request}")
 | |
|         return request
 | |
| 
 | |
|     def process_response(self, response_dict, **kwargs):
 | |
|         """
 | |
|         Preprocess the response
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         req_id = response_dict.request_id
 | |
|         token_ids = response_dict.outputs.token_ids
 | |
| 
 | |
|         response_dict.usage = {"completion_tokens": response_dict.outputs.index + 1}
 | |
|         if token_ids[-1] == self.tokenizer.eos_token_id:
 | |
|             token_ids = token_ids[:-1]
 | |
|         full_text = self.tokenizer.decode(token_ids)
 | |
|         if self.reasoning_parser:
 | |
|             reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
 | |
|             response_dict.outputs.text = text
 | |
|             response_dict.outputs.reasoning_content = reasoning_content
 | |
|         else:
 | |
|             response_dict.outputs.text = full_text
 | |
|         if self.tool_parser_obj:
 | |
|             tool_parser = self.tool_parser_obj(self.tokenizer)
 | |
|             tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
 | |
|             if tool_call_info.tools_called:
 | |
|                 response_dict.outputs.tool_calls = tool_call_info.tool_calls
 | |
|                 response_dict.outputs.text = tool_call_info.content
 | |
|         data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
 | |
|         if response_dict.outputs.text == "" and response_dict.outputs.reasoning_content == "":
 | |
|             return None
 | |
|         return response_dict
 | |
| 
 | |
|     def process_response_dict(self, response_dict, stream, **kwargs):
 | |
|         """
 | |
|         Preprocess the response
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         if stream:
 | |
|             return self.process_response_dict_streaming(response_dict, **kwargs)
 | |
|         else:
 | |
|             return self.process_response_dict_normal(response_dict, **kwargs)
 | |
| 
 | |
|     def process_response_dict_normal(self, response_dict, **kwargs):
 | |
|         """
 | |
|         Preprocess the response
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         enable_thinking = kwargs.get("enable_thinking")
 | |
|         token_ids = response_dict["outputs"]["token_ids"]
 | |
|         is_end = response_dict["finished"]
 | |
|         req_id = response_dict["request_id"]
 | |
|         if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
 | |
|             if token_ids[-1] == self.tokenizer.eos_token_id:
 | |
|                 token_ids = token_ids[:-1]
 | |
|         delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
 | |
|         if is_end:
 | |
|             full_text = previous_texts + delta_text
 | |
|             if self.reasoning_parser and (
 | |
|                 enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser"
 | |
|             ):
 | |
|                 reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
 | |
|                 response_dict["outputs"]["text"] = text
 | |
|                 response_dict["outputs"]["reasoning_content"] = reasoning_content
 | |
|             else:
 | |
|                 response_dict["outputs"]["text"] = full_text
 | |
|             if self.tool_parser_obj:
 | |
|                 tool_parser = self.tool_parser_obj(self.tokenizer)
 | |
|                 tool_call_info = tool_parser.extract_tool_calls(full_text, response_dict)
 | |
|                 if tool_call_info.tools_called:
 | |
|                     response_dict["outputs"]["tool_call"] = tool_call_info.tool_calls
 | |
|                     response_dict["outputs"]["text"] = tool_call_info.content
 | |
|             response_dict["outputs"]["raw_prediction"] = full_text
 | |
|             data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
 | |
|             del self.decode_status[req_id]
 | |
|         return response_dict
 | |
| 
 | |
|     def process_response_dict_streaming(self, response_dict, **kwargs):
 | |
|         """
 | |
|         Preprocess the response streaming
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         enable_thinking = kwargs.get("enable_thinking")
 | |
|         is_end = response_dict["finished"]
 | |
|         req_id = response_dict["request_id"]
 | |
|         token_ids = response_dict["outputs"]["token_ids"]
 | |
| 
 | |
|         if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
 | |
|             if token_ids[-1] == self.tokenizer.eos_token_id:
 | |
|                 token_ids = token_ids[:-1]
 | |
|         delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
 | |
|         response_dict["outputs"]["raw_prediction"] = delta_text
 | |
|         if self.reasoning_parser and (
 | |
|             enable_thinking or self.reasoning_parser.__class__.__name__ == "ErnieX1ReasoningParser"
 | |
|         ):
 | |
|             reasoning_delta_message = self.reasoning_parser.extract_reasoning_content_streaming(
 | |
|                 previous_texts,
 | |
|                 previous_texts + delta_text,
 | |
|                 delta_text,
 | |
|                 previous_token_ids,
 | |
|                 previous_token_ids + token_ids,
 | |
|                 token_ids,
 | |
|             )
 | |
|             response_dict["outputs"]["delta_message"] = reasoning_delta_message
 | |
|         if self.tool_parser_obj:
 | |
|             if req_id not in self.tool_parser_dict:
 | |
|                 self.tool_parser_dict[req_id] = self.tool_parser_obj(self.tokenizer)
 | |
|             tool_parser = self.tool_parser_dict[req_id]
 | |
|             tool_call_delta_message = tool_parser.extract_tool_calls_streaming(
 | |
|                 previous_texts,
 | |
|                 previous_texts + delta_text,
 | |
|                 delta_text,
 | |
|                 previous_token_ids,
 | |
|                 previous_token_ids + token_ids,
 | |
|                 token_ids,
 | |
|                 response_dict,
 | |
|             )
 | |
|             if tool_call_delta_message is None or tool_call_delta_message.tool_calls:
 | |
|                 response_dict["outputs"]["delta_message"] = tool_call_delta_message
 | |
|         response_dict["outputs"]["text"] = delta_text
 | |
|         if is_end:
 | |
|             data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
 | |
|             del self.decode_status[req_id]
 | |
|             if req_id in self.tool_parser_dict:
 | |
|                 del self.tool_parser_dict[req_id]
 | |
|         return response_dict
 | |
| 
 | |
|     def messages2ids(self, request_or_messages):
 | |
|         """
 | |
|         Convert multi-turn messages into ID sequences.
 | |
| 
 | |
|         Args:
 | |
|             request_or_messages: Either a request dict containing 'messages' field,
 | |
|                                 or a list of message dicts directly
 | |
| 
 | |
|         Returns:
 | |
|             List of token IDs as strings (converted from token objects)
 | |
|         """
 | |
|         if self.tokenizer.chat_template is None:
 | |
|             raise ValueError("This model does not support chat_template.")
 | |
|         spliced_message = self.tokenizer.apply_chat_template(
 | |
|             request_or_messages,
 | |
|             tokenize=False,
 | |
|             split_special_tokens=False,
 | |
|             add_special_tokens=False,
 | |
|             chat_template=request_or_messages.get("chat_template", None),
 | |
|         )
 | |
|         request_or_messages["text_after_process"] = spliced_message
 | |
|         req_id = None
 | |
|         if isinstance(request_or_messages, dict):
 | |
|             req_id = request_or_messages.get("request_id", None)
 | |
|         tokens = self.tokenizer.tokenize(spliced_message)
 | |
|         token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | |
|         data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
 | |
|         return token_ids
 | |
| 
 | |
|     def ids2tokens(self, token_id, task_id):
 | |
|         """
 | |
|         token ids to strings
 | |
| 
 | |
|         Args:
 | |
|             token_ids (List[int]): token ids
 | |
|                         task_id (str): task id
 | |
| 
 | |
|         Returns:
 | |
|             List[str]: strings
 | |
|         """
 | |
| 
 | |
|         if task_id not in self.decode_status:
 | |
|             # prefix offset & read offset & history token ids & history token strings
 | |
|             self.decode_status[task_id] = [0, 0, [], ""]
 | |
| 
 | |
|         prefix_offset = self.decode_status[task_id][0]
 | |
|         read_offset = self.decode_status[task_id][1]
 | |
|         previous_token_ids = self.decode_status[task_id][2]
 | |
|         previous_texts = self.decode_status[task_id][3]
 | |
|         decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
 | |
|             previous_token_ids + token_id, prefix_offset, read_offset
 | |
|         )
 | |
|         self.decode_status[task_id][0] = prefix_offset
 | |
|         self.decode_status[task_id][1] = read_offset
 | |
|         self.decode_status[task_id][2] += token_id
 | |
|         self.decode_status[task_id][3] += decode_str
 | |
| 
 | |
|         return decode_str, previous_token_ids, previous_texts
 | |
| 
 | |
|     def _load_tokenizer(self):
 | |
|         """
 | |
|         load tokenizer
 | |
| 
 | |
|         Returns:
 | |
|             tokenizer (AutoTokenizer)
 | |
|         """
 | |
|         vocab_file_names = [
 | |
|             "tokenizer.model",
 | |
|             "spm.model",
 | |
|             "ernie_token_100k.model",
 | |
|         ]
 | |
|         for i in range(len(vocab_file_names)):
 | |
|             if os.path.exists(os.path.join(self.model_name_or_path, vocab_file_names[i])):
 | |
|                 Ernie4_5Tokenizer.resource_files_names["vocab_file"] = vocab_file_names[i]
 | |
|                 break
 | |
|         self.tokenizer = Ernie4_5Tokenizer.from_pretrained(self.model_name_or_path)
 | |
| 
 | |
|     def get_pad_id(self):
 | |
|         """
 | |
|         get pad_token_id, if not pad_token_id, use eos_token
 | |
| 
 | |
|         Returns:
 | |
|             int: pad_token_id
 | |
|         """
 | |
|         # if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
 | |
|         #     return self.tokenizer.eos_token
 | |
|         return self.tokenizer.pad_token_id
 | |
| 
 | |
|     def pad_batch_data(
 | |
|         self,
 | |
|         insts,
 | |
|         pad_id=0,
 | |
|         return_seq_len=False,
 | |
|         return_array=True,
 | |
|         pad_style="right",
 | |
|     ):
 | |
|         """Pad the instances to the max sequence length in batch."""
 | |
|         if len(insts) == 0:
 | |
|             padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]]
 | |
|             if return_seq_len:
 | |
|                 seq_len = np.array([], dtype=np.int64) if return_array else []
 | |
|                 return padded_insts, seq_len
 | |
|             return padded_insts
 | |
| 
 | |
|         max_len = max(map(len, insts))
 | |
|         if pad_style == "left":
 | |
|             padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts]
 | |
|         else:
 | |
|             padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts]
 | |
|         if return_array:
 | |
|             padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len])
 | |
| 
 | |
|         if return_seq_len:
 | |
|             seq_len = [len(inst) for inst in insts]
 | |
|             if return_array:
 | |
|                 seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
 | |
|             return padded_insts, seq_len
 | |
|         return padded_insts
 | |
| 
 | |
|     def update_stop_seq(self, stop_sequences):
 | |
|         """
 | |
|         Update stop sequences from request.
 | |
|         """
 | |
|         stop_seqs = []
 | |
|         if isinstance(stop_sequences, str):
 | |
|             stop_sequences = [stop_sequences]
 | |
|         for seq in stop_sequences:
 | |
|             if seq != self.tokenizer.eos_token_id:
 | |
|                 stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq)))
 | |
|         stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False)
 | |
|         data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
 | |
|         return stop_seqs, stop_seqs_len
 | |
| 
 | |
|     def process_logprob_response(self, token_ids, **kwargs):
 | |
|         full_text = self.tokenizer.decode(token_ids, **kwargs)
 | |
|         return full_text
 | |
| 
 | |
|     def update_bad_words(self, bad_words, bad_words_token_ids):
 | |
|         """Support bad words"""
 | |
| 
 | |
|         token_ids = bad_words_token_ids
 | |
| 
 | |
|         if token_ids is None:
 | |
|             token_ids = []
 | |
|         for bad_word in bad_words:
 | |
|             # To prohibit words both at the beginning
 | |
|             # and in the middle of text
 | |
|             # (related to add_prefix_space tokenizer parameter)
 | |
|             for add_prefix_space in [False, True]:
 | |
|                 prefix = " " if add_prefix_space else ""
 | |
|                 prompt = prefix + bad_word.lstrip()
 | |
|                 prompt_token_ids = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(prompt))
 | |
|                 data_processor_logger.debug(f"processed bad_words: {prompt}, {prompt_token_ids}")
 | |
| 
 | |
|                 if len(prompt_token_ids) != 1:
 | |
|                     if not add_prefix_space:
 | |
|                         data_processor_logger.warning(
 | |
|                             f"Skip bad_words: <{prompt}>."
 | |
|                             f"Bad words should be a single token."
 | |
|                             f"Got tokens: {prompt_token_ids}."
 | |
|                         )
 | |
|                     continue
 | |
| 
 | |
|                 if prompt_token_ids[0] > self.tokenizer.vocab_size:
 | |
|                     if not add_prefix_space:
 | |
|                         data_processor_logger.warning(
 | |
|                             f"Skip bad_words: <{prompt}>."
 | |
|                             f"All token id values should be satisfying:"
 | |
|                             f" 0 <= token_id < {self.tokenizer.vocab_size}."
 | |
|                             f"Got token: {prompt_token_ids}."
 | |
|                         )
 | |
|                     continue
 | |
| 
 | |
|                 if prompt_token_ids not in token_ids:
 | |
|                     token_ids.extend(prompt_token_ids)
 | |
|         return token_ids
 |