Files
FastDeploy/fastdeploy/entrypoints/openai/serving_embedding.py
SunLei b4b579a7ed Feature:Add support for Pooling Model Embedding and provide an OpenAI-compatible API. (#4344)
* feat: add OpenAIServing

* feat: add ZmqOpenAIServing & OpenAIServingEmbedding

* feat: Refine the basic ServingEngine class and introduce ServingContext

* fix: codestyle

* fix: request

* fix: pooling_params

* feat: _process_chat_template_kwargs

* feat: support batch request

* feat: pooling_params verify & default parameters

---------

Co-authored-by: sunlei1024 <sunlei1024@example.com>
2025-10-15 19:42:59 +08:00

154 lines
5.6 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import base64
from typing import Literal, Union
import numpy as np
from typing_extensions import assert_never, override
from fastdeploy.engine.pooling_params import PoolingParams
from fastdeploy.engine.request import (
EmbeddingOutput,
EmbeddingRequestOutput,
PoolingRequestOutput,
)
from fastdeploy.entrypoints.openai.protocol import (
EmbeddingCompletionRequest,
EmbeddingRequest,
EmbeddingResponse,
EmbeddingResponseData,
UsageInfo,
)
from fastdeploy.entrypoints.openai.serving_engine import ServeContext, ZmqOpenAIServing
from fastdeploy.utils import api_server_logger
def _get_embedding(
output: EmbeddingOutput,
encoding_format: Literal["float", "base64"],
) -> Union[list[float], str]:
if encoding_format == "float":
return output.embedding
elif encoding_format == "base64":
# Force to use float32 for base64 encoding
# to match the OpenAI python client behavior
embedding_bytes = np.array(output.embedding, dtype="float32").tobytes()
return base64.b64encode(embedding_bytes).decode("utf-8")
assert_never(encoding_format)
class OpenAIServingEmbedding(ZmqOpenAIServing):
request_id_prefix = "embd"
"""
OpenAI-style embedding serving using pipeline pattern
"""
def __init__(self, engine_client, models, cfg, pid, ips, max_waiting_time, chat_template):
super().__init__(engine_client, models, cfg, pid, ips, max_waiting_time, chat_template)
@override
def _request_to_dict(self, ctx: ServeContext):
request: EmbeddingRequest = ctx.request
request_dict = super()._request_to_dict(ctx)
if hasattr(request, "to_pooling_params"):
pooling_params: PoolingParams = request.to_pooling_params()
pooling_params.verify("embed", self.cfg.model_config)
request_dict["pooling_params"] = pooling_params.to_dict()
return request_dict
@override
def _request_to_batch_dicts(self, ctx: ServeContext):
"""
Convert the request into dictionary format that can be sent to the inference server
"""
request_dicts = []
if isinstance(ctx.request, EmbeddingCompletionRequest):
# Union[list[int], list[list[int]], str, list[str]]
request: EmbeddingCompletionRequest = ctx.request
if isinstance(request.input, str):
request_prompts = [request.input]
elif isinstance(request.input, list) and all(isinstance(item, int) for item in request.input):
request_prompts = [request.input]
elif isinstance(request.input, list) and all(isinstance(item, str) for item in request.input):
request_prompts = request.input
elif isinstance(request.input, list):
for item in request.input:
if isinstance(item, list) and all(isinstance(x, int) for x in item):
continue
else:
raise ValueError("If prompt is a list, each item type must be one of: str, list[int]")
request_prompts = request.input
else:
raise ValueError("Prompt type must be one of: str, list[str], list[int], list[list[int]]")
for idx, prompt in enumerate(request_prompts):
request_dict = self._request_to_dict(ctx)
request_dict["request_id"] = f"{ctx.request_id}-{idx}"
request_dict["prompt"] = prompt
request_dicts.append(request_dict)
else:
request_dicts = [self._request_to_dict(ctx)]
return request_dicts
async def create_embedding(self, request: EmbeddingRequest):
"""
Create embeddings for the input texts using the pipeline pattern
"""
request_id = self._generate_request_id(getattr(request, "user", None))
ctx = ServeContext[EmbeddingRequest](
request=request,
model_name=request.model,
request_id=request_id,
)
generation = self.handle(ctx)
async for response in generation:
return response
@override
def _build_response(self, ctx: ServeContext):
"""Generate final embedding response"""
api_server_logger.info(f"[{ctx.request_id}] Embedding RequestOutput received:{ctx.request_output}")
base = PoolingRequestOutput.from_dict(ctx.request_output)
embedding_res = EmbeddingRequestOutput.from_base(base)
data = EmbeddingResponseData(
index=0,
embedding=_get_embedding(embedding_res.outputs, ctx.request.encoding_format),
)
num_prompt_tokens = 0
if embedding_res.prompt_token_ids:
num_prompt_tokens = len(embedding_res.prompt_token_ids)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
total_tokens=num_prompt_tokens,
)
return EmbeddingResponse(
id=ctx.request_id,
created=ctx.created_time,
model=ctx.model_name,
data=[data],
usage=usage,
)