mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
644 lines
23 KiB
Python
644 lines
23 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
from abc import ABC, abstractmethod
|
||
|
||
import numpy as np
|
||
from paddleformers.generation import GenerationConfig
|
||
from paddleformers.transformers import Llama3Tokenizer, LlamaTokenizer
|
||
|
||
from fastdeploy import envs
|
||
from fastdeploy.utils import data_processor_logger
|
||
|
||
_SAMPLING_EPS = 1e-5
|
||
|
||
|
||
class BaseDataProcessor(ABC):
|
||
"""base class for data processor"""
|
||
|
||
def __init__(self):
|
||
"""
|
||
Returns:
|
||
None
|
||
"""
|
||
self.tokenizer = self._load_tokenizer()
|
||
self.tokenizer.bos_token_id = self.tokenizer._convert_token_to_id(
|
||
self.tokenizer.bos_token)
|
||
self.tokenizer.cls_token_id = self.tokenizer._convert_token_to_id(
|
||
self.tokenizer.cls_token)
|
||
self.tokenizer.sep_token_id = self.tokenizer._convert_token_to_id(
|
||
self.tokenizer.sep_token)
|
||
self.tokenizer.eos_token_id = self.tokenizer._convert_token_to_id(
|
||
self.tokenizer.eos_token)
|
||
self.tokenizer.mask_token_id = self.tokenizer._convert_token_to_id(
|
||
self.tokenizer.mask_token)
|
||
data_processor_logger.info((
|
||
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, ",
|
||
f"cls_token is {self.tokenizer.cls_token}, {self.tokenizer.cls_token_id}, "
|
||
f"sep_token is {self.tokenizer.sep_token}, {self.tokenizer.sep_token_id}, "
|
||
f"eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id}, "
|
||
f"mask_token is {self.tokenizer.mask_token}, {self.tokenizer.mask_token_id}"
|
||
))
|
||
|
||
def _apply_default_parameters(self, request):
|
||
"""
|
||
Apply default value for parameters in request
|
||
"""
|
||
|
||
def set_value(req, key, value):
|
||
value = getattr(self.generation_config, key, value)
|
||
if isinstance(req, dict):
|
||
if key not in req:
|
||
req[key] = value
|
||
else:
|
||
if req.get(key) is None:
|
||
req.set(key, value)
|
||
|
||
set_value(request, "top_p", 0.7)
|
||
set_value(request, "temperature", 1.0)
|
||
set_value(request, "repetition_penalty", 1.0)
|
||
set_value(request, "frequency_penalty", 0.0)
|
||
set_value(request, "presence_penalty", 0.0)
|
||
return request
|
||
|
||
@abstractmethod
|
||
def process_request(self, request, **kwargs):
|
||
"""
|
||
Preprocess the request
|
||
|
||
Args:
|
||
request (Dict): may contain text and messages fields
|
||
**kwargs: others
|
||
|
||
Returns:
|
||
bool: Whether preprocessing is successful
|
||
str: error message
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
@abstractmethod
|
||
def process_response(self, response_dict):
|
||
"""
|
||
Preprocess the response
|
||
|
||
Args:
|
||
response_dict (Dict): response for engine, contain ids fields
|
||
|
||
Returns:
|
||
Dict: response contain text fields
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
def text2ids(self, text, max_model_len=None):
|
||
"""
|
||
text to token ids
|
||
|
||
Args:
|
||
text (str): text
|
||
|
||
Returns:
|
||
List[int]: token ids list
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
def messages2ids(self, messages):
|
||
"""
|
||
Convert multi-turn messages into ID sequences.
|
||
|
||
Args:
|
||
messages (List[List[Dict[str, Any]]]): multi-turn messages.
|
||
|
||
Returns:
|
||
List[int]: ID sequences
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
def ids2tokens(self, token_id, task_id=None):
|
||
"""
|
||
token ids to strings
|
||
|
||
Args:
|
||
token_id (List[int]): token id
|
||
task_id (str): task id
|
||
|
||
Returns:
|
||
List[str]: strings
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
@abstractmethod
|
||
def _load_tokenizer(self):
|
||
"""
|
||
load tokenizer
|
||
|
||
Returns:
|
||
tokenizer (AutoTokenizer)
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
|
||
class DataProcessor(BaseDataProcessor):
|
||
|
||
def __init__(self, model_name_or_path, reasoning_parser_obj=None):
|
||
"""
|
||
Initializes the DecodeStatus object.
|
||
|
||
Args:
|
||
model_name_or_path (str): The name or path of the pre-trained model to be loaded.
|
||
Can also be a path to a directory containing the pre-trained model file.
|
||
|
||
Returns:
|
||
None.
|
||
|
||
Raises:
|
||
None.
|
||
"""
|
||
|
||
self.model_name_or_path = model_name_or_path
|
||
|
||
self._init_config()
|
||
|
||
self.decode_status = dict()
|
||
self.tokenizer = self._load_tokenizer()
|
||
data_processor_logger.info(
|
||
f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, \
|
||
eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
|
||
)
|
||
|
||
from paddleformers.trl.llm_utils import get_eos_token_id
|
||
|
||
self.eos_token_ids = get_eos_token_id(self.tokenizer,
|
||
self.generation_config)
|
||
self.eos_token_id_len = len(self.eos_token_ids)
|
||
self.pad_token_id = self.get_pad_id()
|
||
self.reasoning_parser = None
|
||
if reasoning_parser_obj:
|
||
self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
|
||
self.tokenizer.pad_token_id = self.pad_token_id
|
||
|
||
def _init_config(self):
|
||
"""
|
||
初始化配置,包括模型名称、使用Hugging Face Tokenizer等。
|
||
|
||
Args:
|
||
无参数,但是会从环境变量中获取一些配置信息。
|
||
|
||
Returns:
|
||
无返回值,直接修改了类的属性。
|
||
|
||
Raises:
|
||
无异常抛出。
|
||
"""
|
||
self.use_hf_tokenizer = int(envs.FD_USE_HF_TOKENIZER) == 1
|
||
|
||
# Generation config
|
||
try:
|
||
self.generation_config = GenerationConfig.from_pretrained(
|
||
self.model_name_or_path)
|
||
except Exception as e:
|
||
data_processor_logger.warning(
|
||
f"Can't find generation config: {e}, so it will not use generation_config field in the model config"
|
||
)
|
||
self.generation_config = None
|
||
|
||
def process_request(self, request, max_model_len=None, **kwargs):
|
||
"""
|
||
Preprocess the request
|
||
|
||
Args:
|
||
request (Dict): may contain text and messages fields
|
||
|
||
Returns:
|
||
bool: Whether preprocessing is successful
|
||
str: error message
|
||
"""
|
||
request = self._apply_default_parameters(request)
|
||
if request.get("eos_token_ids") is None or len(
|
||
request.eos_token_ids) == 0:
|
||
request.eos_token_ids = self.eos_token_ids
|
||
|
||
stop_sequences = request.get("stop", [])
|
||
if stop_sequences is not None and len(stop_sequences) != 0:
|
||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||
request.set("stop_token_ids", stop_seqs)
|
||
request.set("stop_seqs_len", stop_seqs_len)
|
||
|
||
if request.prompt_token_ids is None or len(
|
||
request.prompt_token_ids) == 0:
|
||
if request.prompt is not None:
|
||
request.prompt_token_ids = self.text2ids(
|
||
request.prompt, max_model_len, request.raw_request)
|
||
elif request.messages is not None:
|
||
if self.tokenizer.chat_template is None:
|
||
raise ValueError(
|
||
"This model does not support chat_template.")
|
||
task = request.to_dict()
|
||
task['enable_thinking'] = kwargs.get("enable_thinking", True)
|
||
request.prompt_token_ids = self.messages2ids(task)
|
||
else:
|
||
raise ValueError(
|
||
f"The request should have `input_ids`, `text` or `messages`: {request}."
|
||
)
|
||
if request.get("max_tokens") is None:
|
||
request.set("max_tokens",
|
||
max(1, max_model_len - len(request.prompt_token_ids)))
|
||
if request.get("temperature") < _SAMPLING_EPS:
|
||
# zero temperature is equivalent to greedy sampling
|
||
request.set("temperature", 1)
|
||
if request.get("top_p") < _SAMPLING_EPS:
|
||
request.set("top_p", _SAMPLING_EPS)
|
||
data_processor_logger.info(f"Processed request {request}")
|
||
return request
|
||
|
||
def process_request_dict(self, request, max_model_len=None, **kwargs):
|
||
"""
|
||
Preprocess the request
|
||
|
||
Args:
|
||
request (Dict): may contain text and messages fields
|
||
|
||
Returns:
|
||
bool: Whether preprocessing is successful
|
||
str: error message
|
||
"""
|
||
request = self._apply_default_parameters(request)
|
||
if not request.get('eos_token_ids'):
|
||
request['eos_token_ids'] = self.eos_token_ids
|
||
|
||
# 处理stop_sequences
|
||
stop_sequences = request.get('stop', [])
|
||
if stop_sequences:
|
||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||
request['stop_token_ids'] = stop_seqs
|
||
request['stop_seqs_len'] = stop_seqs_len
|
||
|
||
data_processor_logger.info(f"Processing request {request}")
|
||
# 处理prompt_token_ids
|
||
if not request.get('prompt_token_ids'):
|
||
if 'prompt' in request:
|
||
raw_request = request.get('raw_request', True)
|
||
request['prompt_token_ids'] = self.text2ids(
|
||
request['prompt'], max_model_len, raw_request).tolist()
|
||
elif 'messages' in request:
|
||
if self.tokenizer.chat_template is None:
|
||
raise ValueError(
|
||
"This model does not support chat_template.")
|
||
request['prompt_token_ids'] = self.messages2ids(request)
|
||
else:
|
||
raise ValueError(
|
||
f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
|
||
)
|
||
|
||
if request.get("max_tokens") is None:
|
||
request["max_tokens"] = max(
|
||
1, max_model_len - len(request['prompt_token_ids']))
|
||
if request.get("temperature") < _SAMPLING_EPS:
|
||
# zero temperature is equivalent to greedy sampling
|
||
request["temperature"] = 1
|
||
if request.get("top_p") < _SAMPLING_EPS:
|
||
request["top_p"] = _SAMPLING_EPS
|
||
data_processor_logger.info(f"Processed request {request}")
|
||
return request
|
||
|
||
def process_logprob_response(self, token_ids, **kwargs):
|
||
full_text = self.tokenizer.decode(token_ids, **kwargs)
|
||
return full_text
|
||
|
||
def process_response(self, response_dict, **kwargs):
|
||
"""
|
||
Preprocess the response
|
||
|
||
Args:
|
||
response_dict (Dict): response for engine, contain ids fields
|
||
|
||
Returns:
|
||
Dict: response contain text fields
|
||
"""
|
||
req_id = response_dict.request_id
|
||
token_ids = response_dict.outputs.token_ids
|
||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||
token_ids = token_ids[:-1]
|
||
full_text = self.tokenizer.decode(token_ids)
|
||
|
||
# 模型支持思考,并且支持思考
|
||
if self.reasoning_parser:
|
||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
|
||
full_text, response_dict)
|
||
response_dict.outputs.text = text
|
||
response_dict.outputs.reasoning_content = reasoning_content
|
||
else:
|
||
# 模型不支持思考,并且没单独设置enable_thinking为false
|
||
response_dict.outputs.text = full_text
|
||
data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
|
||
|
||
return response_dict
|
||
|
||
def process_response_dict_normal(self, response_dict, **kwargs):
|
||
"""
|
||
Preprocess the response
|
||
|
||
Args:
|
||
response_dict (Dict): response for engine, contain ids fields
|
||
|
||
Returns:
|
||
Dict: response contain text fields
|
||
"""
|
||
token_ids = response_dict["outputs"]["token_ids"]
|
||
is_end = response_dict["finished"]
|
||
req_id = response_dict["request_id"]
|
||
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||
token_ids = token_ids[:-1]
|
||
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
|
||
if is_end:
|
||
full_text = previous_texts + delta_text
|
||
if self.reasoning_parser:
|
||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
|
||
full_text, response_dict)
|
||
response_dict["outputs"]["text"] = text
|
||
response_dict["outputs"][
|
||
"reasoning_content"] = reasoning_content
|
||
else:
|
||
response_dict["outputs"]["text"] = full_text
|
||
data_processor_logger.info(
|
||
f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
|
||
)
|
||
del self.decode_status[req_id]
|
||
return response_dict
|
||
|
||
def process_response_dict_streaming(self, response_dict, **kwargs):
|
||
"""
|
||
Preprocess the response
|
||
|
||
Args:
|
||
response_dict (Dict): response for engine, contain ids fields
|
||
|
||
Returns:
|
||
Dict: response contain text fields
|
||
"""
|
||
enable_thinking = kwargs.get("enable_thinking")
|
||
is_end = response_dict["finished"]
|
||
req_id = response_dict["request_id"]
|
||
token_ids = response_dict["outputs"]["token_ids"]
|
||
|
||
if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
|
||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||
token_ids = token_ids[:-1]
|
||
delta_text, previous_token_ids, previous_texts = self.ids2tokens(
|
||
token_ids, req_id)
|
||
|
||
if enable_thinking and self.reasoning_parser:
|
||
reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
|
||
previous_texts, previous_texts + delta_text, delta_text,
|
||
previous_token_ids, previous_token_ids + token_ids, token_ids)
|
||
response_dict["outputs"]["text"] = text
|
||
response_dict["outputs"]["reasoning_content"] = reasoning_content
|
||
else:
|
||
response_dict["outputs"]["text"] = delta_text
|
||
if is_end:
|
||
data_processor_logger.info(
|
||
f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
|
||
)
|
||
del self.decode_status[req_id]
|
||
return response_dict
|
||
|
||
def process_response_dict(self, response_dict, **kwargs):
|
||
"""
|
||
Preprocess the response
|
||
|
||
Args:
|
||
response_dict (Dict): response for engine, contain ids fields
|
||
|
||
Returns:
|
||
Dict: response contain text fields
|
||
"""
|
||
enable_thinking = kwargs.pop("enable_thinking", True)
|
||
if enable_thinking is None:
|
||
enable_thinking = True
|
||
stream = kwargs.get("stream", True)
|
||
if stream:
|
||
return self.process_response_dict_streaming(
|
||
response_dict, enable_thinking=enable_thinking, **kwargs)
|
||
else:
|
||
return self.process_response_dict_normal(
|
||
response_dict=response_dict, enable_thinking=enable_thinking, **kwargs)
|
||
|
||
def text2ids(self, text, max_model_len, raw_request=True):
|
||
"""
|
||
text to token ids
|
||
|
||
Args:
|
||
text (str): text
|
||
|
||
Returns:
|
||
List[int]: token ids list
|
||
"""
|
||
if self.use_hf_tokenizer:
|
||
tokens = self.tokenizer(
|
||
text,
|
||
return_tensors="np",
|
||
padding=True,
|
||
truncation=True,
|
||
)
|
||
else:
|
||
text = [text] if isinstance(text, str) else text
|
||
|
||
tokens = self.tokenizer(
|
||
text,
|
||
return_tensors="np",
|
||
padding=True,
|
||
truncation=True,
|
||
max_length=max_model_len,
|
||
add_special_tokens=False,
|
||
)
|
||
|
||
return tokens["input_ids"][0]
|
||
|
||
def messages2ids(self, request):
|
||
"""
|
||
Convert multi-turn messages into ID sequences.
|
||
|
||
Args:
|
||
messages (List[List[Dict[str, Any]]]): multi-turn messages.
|
||
|
||
Returns:
|
||
List[int]: ID sequences
|
||
"""
|
||
|
||
spliced_message = self.tokenizer.apply_chat_template(
|
||
request,
|
||
tokenize=False,
|
||
split_special_tokens=False,
|
||
add_special_tokens=False,
|
||
return_tensors="pd")
|
||
req_id = None
|
||
tokens = self.tokenizer.tokenize(spliced_message)
|
||
if isinstance(request, dict):
|
||
req_id = request.get("request_id", None)
|
||
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
|
||
data_processor_logger.info(
|
||
f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
|
||
return token_ids
|
||
|
||
def ids2tokens(self, token_id, task_id):
|
||
"""
|
||
token ids to strings
|
||
|
||
Args:
|
||
token_ids (List[int]): token ids
|
||
task_id (str): task id
|
||
|
||
Returns:
|
||
List[str]: strings
|
||
"""
|
||
if self.use_hf_tokenizer:
|
||
if task_id not in self.decode_status:
|
||
# history token ids & history token strings & befer decode str
|
||
self.decode_status[task_id] = [[], [], ""]
|
||
|
||
previous_token_ids = self.decode_status[task_id][0]
|
||
decode_str = self.tokenizer.batch_decode(
|
||
[previous_token_ids + token_id],
|
||
skip_special_tokens=True,
|
||
clean_up_tokenization_spaces=False)
|
||
if isinstance(decode_str, list) and len(decode_str):
|
||
new_str = decode_str[0].replace(self.decode_status[task_id][2],
|
||
"", 1)
|
||
self.decode_status[task_id][1].append(new_str)
|
||
self.decode_status[task_id][2] = decode_str[0]
|
||
else:
|
||
new_str = ""
|
||
self.decode_status[task_id][0] += token_id
|
||
return new_str
|
||
else:
|
||
if task_id not in self.decode_status:
|
||
# prefix offset & read offset & history token ids & history token strings
|
||
self.decode_status[task_id] = [0, 0, [], ""]
|
||
|
||
prefix_offset = self.decode_status[task_id][0]
|
||
read_offset = self.decode_status[task_id][1]
|
||
previous_token_ids = self.decode_status[task_id][2]
|
||
previous_texts = self.decode_status[task_id][3]
|
||
decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
|
||
previous_token_ids + token_id, prefix_offset, read_offset)
|
||
self.decode_status[task_id][0] = prefix_offset
|
||
self.decode_status[task_id][1] = read_offset
|
||
self.decode_status[task_id][2] += token_id
|
||
self.decode_status[task_id][3] += decode_str
|
||
|
||
return decode_str, previous_token_ids, previous_texts
|
||
|
||
def _load_tokenizer(self):
|
||
"""
|
||
load tokenizer
|
||
|
||
Returns:
|
||
tokenizer (AutoTokenizer)
|
||
"""
|
||
if self.use_hf_tokenizer:
|
||
from transformers import AutoTokenizer
|
||
return AutoTokenizer.from_pretrained(self.model_name_or_path,
|
||
use_fast=False)
|
||
else:
|
||
from paddleformers.transformers import AutoTokenizer
|
||
return AutoTokenizer.from_pretrained(self.model_name_or_path,
|
||
padding_side="left",
|
||
use_fast=True)
|
||
|
||
def clear_request_status(self, task_id):
|
||
"""
|
||
clear request status
|
||
|
||
Args:
|
||
task_id (str): task id
|
||
|
||
Returns:
|
||
results_all (str): all token strings
|
||
"""
|
||
results_all = ""
|
||
if task_id in self.decode_status:
|
||
if self.use_hf_tokenizer:
|
||
results_all = self.decode_status[task_id][2]
|
||
else:
|
||
results_all = "".join(self.decode_status[task_id][3])
|
||
del self.decode_status[task_id]
|
||
return results_all
|
||
|
||
def get_pad_id(self):
|
||
"""
|
||
get pad_token_id, if not pad_token_id, use eos_token
|
||
|
||
Returns:
|
||
int: pad_token_id
|
||
"""
|
||
if isinstance(self.tokenizer,
|
||
(LlamaTokenizer,
|
||
Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
|
||
return self.tokenizer.eos_token
|
||
return self.tokenizer.pad_token_id
|
||
|
||
def pad_batch_data(self,
|
||
insts,
|
||
pad_id=0,
|
||
return_seq_len=False,
|
||
return_array=True,
|
||
pad_style="right"):
|
||
"""Pad the instances to the max sequence length in batch."""
|
||
if len(insts) == 0:
|
||
padded_insts = np.array([[]],
|
||
dtype=np.int64) if return_array else [[]]
|
||
if return_seq_len:
|
||
seq_len = np.array([], dtype=np.int64) if return_array else []
|
||
return padded_insts, seq_len
|
||
return padded_insts
|
||
|
||
max_len = max(map(len, insts))
|
||
if pad_style == "left":
|
||
padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst)
|
||
for inst in insts]
|
||
else:
|
||
padded_insts = [
|
||
list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts
|
||
]
|
||
if return_array:
|
||
padded_insts = np.array(padded_insts,
|
||
dtype=np.int64).reshape([-1, max_len])
|
||
|
||
if return_seq_len:
|
||
seq_len = [len(inst) for inst in insts]
|
||
if return_array:
|
||
seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
|
||
return padded_insts, seq_len
|
||
return padded_insts
|
||
|
||
def update_stop_seq(self, stop_sequences):
|
||
"""
|
||
Update stop sequences from request.
|
||
"""
|
||
stop_seqs = []
|
||
for seq in stop_sequences:
|
||
if seq != self.tokenizer.eos_token_id:
|
||
stop_seqs.append(
|
||
self.tokenizer.convert_tokens_to_ids(
|
||
self.tokenizer.tokenize(seq)))
|
||
stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs,
|
||
pad_id=-1,
|
||
return_seq_len=True,
|
||
return_array=False)
|
||
data_processor_logger.debug(
|
||
f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
|
||
return stop_seqs, stop_seqs_len
|