mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 d74e1209ae
			
		
	
	d74e1209ae
	
	
	
		
			
			* Update Inpaint pipeline * Update concat * Add GaussianRandomKernel * Update GaussianRandom * Add vae endoder * Add unet infer * Add vae decoder predict * add PrepareMaskAndMaskedImage * Add imwrite * Add time counter * Fix pipeline * use FDTensor move * Fix scaled_linear dpm solver * Add RGB2BGR
		
			
				
	
	
		
			119 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/function/concat.h"
 | |
| 
 | |
| #include "fastdeploy/utils/utils.h"
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <set>
 | |
| #include <sstream>
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace function {
 | |
| 
 | |
| std::vector<int64_t>
 | |
| ComputeAndCheckConcatOutputShape(const std::vector<FDTensor>& input, int axis) {
 | |
|   const size_t n = input.size();
 | |
|   auto out_dims = input[0].shape;
 | |
|   size_t in_zero_dims_size = out_dims.size();
 | |
|   for (size_t i = 1; i < n; ++i) {
 | |
|     FDASSERT(input[i].shape.size() == out_dims.size(),
 | |
|              "The shape of input[0] and input[%d] is expected to be equal. But "
 | |
|              "received input[0]'s shape = %s, input[%d]'s shape = %s.",
 | |
|              i, Str(out_dims).c_str(), i, Str(input[i].shape).c_str());
 | |
|     for (size_t j = 0; j < in_zero_dims_size; j++) {
 | |
|       if (j == axis) {
 | |
|         out_dims[axis] += input[i].shape[axis];
 | |
|       } else {
 | |
|         FDASSERT(
 | |
|             input[0].shape[j] == input[i].shape[j],
 | |
|             "The %d-th dimension of input[0] and input[%d] is expected to be "
 | |
|             "equal."
 | |
|             "But received input[0]'s shape = %s, input[%d]'s shape = %s.",
 | |
|             j, i, Str(input[0].shape).c_str(), i, Str(input[i].shape).c_str());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return out_dims;
 | |
| }
 | |
| 
 | |
| template <typename T> struct ConcatFunctor {
 | |
|   void operator()(const std::vector<FDTensor>& input, int axis,
 | |
|                   FDTensor* output) {
 | |
|     size_t num = input.size();
 | |
| 
 | |
|     int64_t rows = 1;
 | |
|     auto dim_0 = input[0].shape;
 | |
|     for (int i = 0; i < axis; ++i) {
 | |
|       rows *= dim_0[i];
 | |
|     }
 | |
|     int64_t out_rows = rows, out_cols = 0;
 | |
| 
 | |
|     std::vector<int64_t> input_cols(num);
 | |
|     for (size_t i = 0; i < num; ++i) {
 | |
|       int64_t t_cols = input[i].Numel() / rows;
 | |
|       out_cols += t_cols;
 | |
|       input_cols[i] = t_cols;
 | |
|     }
 | |
| 
 | |
|     // computation
 | |
|     T* output_data = reinterpret_cast<T*>(output->Data());
 | |
|     int64_t col_idx = 0;
 | |
|     for (size_t j = 0; j < num; ++j) {
 | |
|       int64_t col_len = input_cols[j];
 | |
|       const T* input_data = reinterpret_cast<const T*>(input[j].Data());
 | |
|       for (int64_t k = 0; k < out_rows; ++k) {
 | |
|         FDTensor::CopyBuffer(output_data + k * out_cols + col_idx,
 | |
|                              input_data + k * col_len, sizeof(T) * col_len,
 | |
|                              input[j].device, input[j].is_pinned_memory);
 | |
|       }
 | |
|       col_idx += col_len;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| void ConcatKernel(const std::vector<FDTensor>& input, FDTensor* output,
 | |
|                   int axis) {
 | |
|   auto output_shape = ComputeAndCheckConcatOutputShape(input, axis);
 | |
|   FDTensor output_tmp;
 | |
|   output_tmp.Resize(output_shape, TypeToDataType<T>::dtype, output->name,
 | |
|                     input[0].device);
 | |
| 
 | |
|   ConcatFunctor<T> functor;
 | |
|   functor(input, axis, &output_tmp);
 | |
|   *output = std::move(output_tmp);
 | |
| }
 | |
| 
 | |
| void Concat(const std::vector<FDTensor>& x, FDTensor* out, int axis) {
 | |
|   FDASSERT(x.size() > 0,
 | |
|            "The number of FDTensor array should be larger than 0, but the size "
 | |
|            "of input is %d",
 | |
|            x.size());
 | |
|   int64_t rank = x[0].shape.size();
 | |
|   FDASSERT(axis >= -rank && axis < rank,
 | |
|            "The axis is expected to be in range of [%d, %d), but got %d", -rank,
 | |
|            rank, axis);
 | |
|   if (axis < 0) {
 | |
|     axis += rank;
 | |
|   }
 | |
| 
 | |
|   FD_VISIT_ALL_TYPES(x[0].dtype, "Concat",
 | |
|                      ([&] { ConcatKernel<data_t>(x, out, axis); }));
 | |
| }
 | |
| 
 | |
| }  // namespace function
 | |
| }  // namespace fastdeploy
 |