mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			481 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			481 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from typing import Dict
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.model_executor.models.ernie4_5_moe import (
 | |
|     Ernie4_5_MoeForCausalLM,
 | |
|     Ernie4_5_PretrainedModel,
 | |
| )
 | |
| from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import (
 | |
|     Ernie4_5_VLMoeForConditionalGeneration,
 | |
|     Ernie4_5_VLPretrainedModel,
 | |
| )
 | |
| from fastdeploy.model_executor.models.model_base import ModelRegistry
 | |
| from fastdeploy.model_executor.models.qwen2 import (
 | |
|     Qwen2ForCausalLM,
 | |
|     Qwen2PretrainedModel,
 | |
| )
 | |
| from fastdeploy.model_executor.models.qwen3 import (
 | |
|     Qwen3ForCausalLM,
 | |
|     Qwen3PretrainedModel,
 | |
| )
 | |
| from fastdeploy.model_executor.models.qwen3moe import (
 | |
|     Qwen3MoeForCausalLM,
 | |
|     Qwen3MoePretrainedModel,
 | |
| )
 | |
| from fastdeploy.rl.rollout_config import RolloutModelConfig
 | |
| 
 | |
| 
 | |
| class RolloutModel(nn.Layer):
 | |
|     """Main model class for rollout operations, supports multimodal components for train."""
 | |
| 
 | |
|     def __init__(self, rollout_model_config: RolloutModelConfig):
 | |
|         """Initialize with FastDeploy configuration."""
 | |
|         super(RolloutModel, self).__init__()
 | |
|         self.fd_config = rollout_model_config.initialize()
 | |
|         self.rollout_model = self._init_model()
 | |
| 
 | |
|     def _init_model(self) -> nn.Layer:
 | |
|         """Load model from loader based on config."""
 | |
|         context = paddle.LazyGuard()
 | |
|         architectures = f"{self.fd_config.model_config.architectures[0]}RL"
 | |
|         with context:
 | |
|             model_cls = ModelRegistry.get_class(architectures)
 | |
|             model = model_cls(self.fd_config)
 | |
|         model.eval()
 | |
|         return model
 | |
| 
 | |
|     def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
 | |
|         """Get parameter name mappings between rollout and training models."""
 | |
|         return getattr(self.rollout_model, "get_name_mappings_to_training", lambda: {})(trainer_degree)
 | |
| 
 | |
|     def get_quantization_infer_keys(self) -> Dict[str, str]:
 | |
|         """Get parameter name mappings between rollout and training models."""
 | |
|         return getattr(self.rollout_model, "get_quantization_infer_keys", lambda: {})()
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def state_dict(self):
 | |
|         """state_dict"""
 | |
|         return self.rollout_model.state_dict()
 | |
| 
 | |
| 
 | |
| class BaseRLModel(nn.Layer):
 | |
|     """Base class for RL models with common functionality"""
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|     ):
 | |
|         super(BaseRLModel, self).__init__()
 | |
|         self.infer_to_train_mapping = {}
 | |
|         self.fd_config = None
 | |
|         self._mappings_built = False
 | |
| 
 | |
|     @classmethod
 | |
|     def name(cls) -> str:
 | |
|         return cls.__name__
 | |
| 
 | |
|     def _update_base_mappings(self, base_name: str) -> None:
 | |
|         """Common static mappings"""
 | |
|         static_mappings = {
 | |
|             f"{base_name}.embed_tokens.embeddings.weight": f"{base_name}.embed_tokens.weight",
 | |
|             "lm_head.linear.weight": "lm_head.weight",
 | |
|         }
 | |
|         self.infer_to_train_mapping.update(static_mappings)
 | |
| 
 | |
|     def _complete_missing_mappings(self) -> None:
 | |
|         """
 | |
|         Complete the mapping dictionary with keys that have identical names in inference and training.
 | |
|         """
 | |
|         for key in self.state_dict().keys():
 | |
|             if key not in self.infer_to_train_mapping and "_scale" not in key:
 | |
|                 # Skip weight scale parameters in mapping. Train and infer have same key.
 | |
|                 self.infer_to_train_mapping[key] = key
 | |
| 
 | |
|     def get_quantization_infer_keys(self) -> list[str]:
 | |
|         """Get quantization infer keys"""
 | |
|         quant_weight_key = []
 | |
|         if self.fd_config.quant_config.name() == "wint8":
 | |
|             """RL only support weight_only_int8 now"""
 | |
|             for key in self.state_dict().keys():
 | |
|                 if "scale" in key:
 | |
|                     quant_weight_key.append(key.replace(".weight_scale", ".weight"))
 | |
|         else:
 | |
|             raise ValueError("Only 'wint8' quantization is supported in RL roullout.")
 | |
|         return quant_weight_key
 | |
| 
 | |
| 
 | |
| class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
 | |
|     """
 | |
|     Ernie4_5_MoeForCausalLMRL
 | |
|     """
 | |
| 
 | |
|     _get_tensor_parallel_mappings = Ernie4_5_PretrainedModel._get_tensor_parallel_mappings
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Ernie4_5_MoeForCausalLMRL, self).__init__(fd_config)
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self) -> str:
 | |
|         """name"""
 | |
|         return "Ernie4_5_MoeForCausalLMRL"
 | |
| 
 | |
|     def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
 | |
|         """Generate mapping between inference and training parameter for RL(donot delete!)."""
 | |
|         if self._mappings_built:
 | |
|             return self.infer_to_train_mapping
 | |
| 
 | |
|         self.infer_to_train_mapping = {}
 | |
|         self._mappings_built = True
 | |
| 
 | |
|         # Prepare placeholders
 | |
|         place_holders = ["weight"]
 | |
| 
 | |
|         # Initialize mapping dictionary
 | |
|         self._update_base_mappings("ernie")
 | |
| 
 | |
|         base_name = "ernie.layers"
 | |
| 
 | |
|         # Helper function to add layer mappings
 | |
|         def _add_layer_mappings(layer_idx: int):
 | |
|             # MoE specific mappings
 | |
|             self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = (
 | |
|                 f"{base_name}.{layer_idx}.mlp.gate.weight"
 | |
|             )
 | |
| 
 | |
|             if self.fd_config.model_config.moe_use_aux_free:
 | |
|                 self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = (
 | |
|                     f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
 | |
|                 )
 | |
| 
 | |
|             # MoE experts mappings
 | |
|             for expert_idx in range(self.fd_config.model_config.moe_num_experts):
 | |
|                 for ph in place_holders:
 | |
|                     # up_gate_proj (up_gate_proj)
 | |
|                     up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.up_gate_proj_weight"
 | |
|                     if up_gate_proj_key not in self.infer_to_train_mapping:
 | |
|                         self.infer_to_train_mapping[up_gate_proj_key] = []
 | |
|                     self.infer_to_train_mapping[up_gate_proj_key].append(
 | |
|                         f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
 | |
|                     )
 | |
| 
 | |
|                     # down_proj (down_proj)
 | |
|                     down_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.down_proj_weight"
 | |
|                     if down_proj_key not in self.infer_to_train_mapping:
 | |
|                         self.infer_to_train_mapping[down_proj_key] = []
 | |
|                     self.infer_to_train_mapping[down_proj_key].append(
 | |
|                         f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
 | |
|                     )
 | |
| 
 | |
|         assert isinstance(self.fd_config.model_config.moe_layer_start_index, int)
 | |
|         # Process MoE layers
 | |
|         for layer_idx in range(
 | |
|             self.fd_config.model_config.moe_layer_start_index,
 | |
|             self.fd_config.model_config.num_hidden_layers,
 | |
|         ):
 | |
|             _add_layer_mappings(layer_idx)
 | |
| 
 | |
|         self._complete_missing_mappings()
 | |
| 
 | |
|         return self.infer_to_train_mapping
 | |
| 
 | |
| 
 | |
| class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGeneration, BaseRLModel):
 | |
|     """
 | |
|     Ernie4_5_VLMoeForConditionalGenerationRL
 | |
|     """
 | |
| 
 | |
|     _get_tensor_parallel_mappings = Ernie4_5_VLPretrainedModel._get_tensor_parallel_mappings
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Ernie4_5_VLMoeForConditionalGenerationRL, self).__init__(fd_config)
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self) -> str:
 | |
|         """name"""
 | |
|         return "Ernie4_5_VLMoeForConditionalGenerationRL"
 | |
| 
 | |
|     def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
 | |
|         """Generate mapping between inference and training parameter for RL(donot delete!)."""
 | |
|         if self._mappings_built:
 | |
|             return self.infer_to_train_mapping
 | |
| 
 | |
|         self.infer_to_train_mapping = {}
 | |
|         self._mappings_built = True
 | |
|         # Prepare placeholders
 | |
|         place_holders = ["weight"]
 | |
| 
 | |
|         # Initialize mapping dictionary
 | |
|         self._update_base_mappings("ernie")
 | |
| 
 | |
|         base_name = "ernie.layers"
 | |
| 
 | |
|         # Helper function to add layer mappings
 | |
|         def _add_expert_mappings(layer_idx: int, moe_tag: str, expert_start: int):
 | |
|             # MoE specific mappings
 | |
|             gate_suffix = "" if moe_tag == "text" else "_1"
 | |
|             self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = (
 | |
|                 f"{base_name}.{layer_idx}.mlp.gate.weight{gate_suffix}"
 | |
|             )
 | |
| 
 | |
|             if self.fd_config.model_config.moe_use_aux_free:
 | |
|                 self.infer_to_train_mapping[
 | |
|                     f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"
 | |
|                 ] = f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
 | |
| 
 | |
|             # Initialize defaultdict for expert weights
 | |
|             from collections import defaultdict
 | |
|             from itertools import chain
 | |
| 
 | |
|             def _generate_ranges(start, end, step=16, take=8):
 | |
|                 """生成 [start, start+take), [start+step, start+step+take), ... 直到 end"""
 | |
|                 return chain(*(range(i, min(i + take, end)) for i in range(start, end, step)))  # 防止越界
 | |
| 
 | |
|             expert_mappings = defaultdict(list)
 | |
|             for expert_idx in _generate_ranges(
 | |
|                 expert_start,
 | |
|                 total_moe_num,
 | |
|                 expert_num_per_rank * 2,
 | |
|                 expert_num_per_rank,
 | |
|             ):
 | |
|                 for ph in place_holders:
 | |
|                     expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"].append(
 | |
|                         f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
 | |
|                     )
 | |
|                     expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.down_proj_weight"].append(
 | |
|                         f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
 | |
|                     )
 | |
|             self.infer_to_train_mapping.update(expert_mappings)
 | |
| 
 | |
|         moe_layer_start_index = self.fd_config.model_config.moe_layer_start_index
 | |
|         if isinstance(moe_layer_start_index, int):
 | |
|             text_moe_layer_start_index = moe_layer_start_index
 | |
|             image_moe_layer_start_index = moe_layer_start_index
 | |
|         else:
 | |
|             text_moe_layer_start_index = moe_layer_start_index[0]
 | |
|             image_moe_layer_start_index = moe_layer_start_index[1]
 | |
| 
 | |
|         moe_layer_end_index = self.fd_config.model_config.moe_layer_end_index
 | |
|         if moe_layer_end_index is None:
 | |
|             text_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
 | |
|             image_moe_layer_end_index = self.fd_config.model_config.num_hidden_layers
 | |
|         elif isinstance(moe_layer_end_index, int):
 | |
|             text_moe_layer_end_index = moe_layer_end_index
 | |
|             image_moe_layer_end_index = moe_layer_end_index
 | |
|         else:
 | |
|             text_moe_layer_end_index = moe_layer_end_index[0]
 | |
|             image_moe_layer_end_index = moe_layer_end_index[1]
 | |
| 
 | |
|         assert isinstance(self.fd_config.model_config.moe_num_experts, list)
 | |
|         total_moe_num = sum(self.fd_config.model_config.moe_num_experts)
 | |
|         if not trainer_degree:
 | |
|             trainer_degree = self.fd_config.parallel_config.tensor_parallel_size
 | |
|         expert_num_per_rank = self.fd_config.model_config.moe_num_experts[0] // trainer_degree
 | |
|         # Process MoE layers
 | |
|         for layer_idx in range(text_moe_layer_start_index, text_moe_layer_end_index):
 | |
|             _add_expert_mappings(layer_idx, "text", expert_start=0)
 | |
|         for layer_idx in range(image_moe_layer_start_index, image_moe_layer_end_index):
 | |
|             _add_expert_mappings(layer_idx, "image", expert_start=expert_num_per_rank)
 | |
| 
 | |
|         self._complete_missing_mappings()
 | |
| 
 | |
|         return self.infer_to_train_mapping
 | |
| 
 | |
| 
 | |
| class Qwen2ForCausalLMRL(Qwen2ForCausalLM, BaseRLModel):
 | |
|     """
 | |
|     Qwen2ForCausalLMRL
 | |
|     """
 | |
| 
 | |
|     _get_tensor_parallel_mappings = Qwen2PretrainedModel._get_tensor_parallel_mappings
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Qwen2ForCausalLMRL, self).__init__(fd_config)
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self) -> str:
 | |
|         """name"""
 | |
|         return "Qwen2ForCausalLMRL"
 | |
| 
 | |
|     def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
 | |
|         """Generate mapping between inference and training parameter for RL(donot delete!)."""
 | |
|         if self._mappings_built:
 | |
|             return self.infer_to_train_mapping
 | |
| 
 | |
|         self.infer_to_train_mapping = {}
 | |
|         self._mappings_built = True
 | |
|         # Prepare placeholders
 | |
|         place_holders = ["weight"]
 | |
| 
 | |
|         # Initialize mapping dictionary
 | |
|         self._update_base_mappings("qwen2")
 | |
|         base_name = "qwen2.layers"
 | |
| 
 | |
|         # Helper function to add layer mappings
 | |
|         def _add_layer_mappings(layer_idx):
 | |
|             # FFN mappings
 | |
|             for ph in place_holders:
 | |
|                 self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = (
 | |
|                     f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
 | |
|                 )
 | |
| 
 | |
|         for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
 | |
|             _add_layer_mappings(layer_idx)
 | |
| 
 | |
|         self._complete_missing_mappings()
 | |
| 
 | |
|         return self.infer_to_train_mapping
 | |
| 
 | |
| 
 | |
| class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
 | |
|     """
 | |
|     Qwen3MoeForCausalLMRL
 | |
|     """
 | |
| 
 | |
|     _get_tensor_parallel_mappings = Qwen3MoePretrainedModel._get_tensor_parallel_mappings
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Qwen3MoeForCausalLMRL, self).__init__(fd_config)
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self) -> str:
 | |
|         """name"""
 | |
|         return "Qwen3MoeForCausalLMRL"
 | |
| 
 | |
|     def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
 | |
|         """Generate mapping between inference and training parameter for RL(donot delete!)."""
 | |
|         if self._mappings_built:
 | |
|             return self.infer_to_train_mapping
 | |
| 
 | |
|         self.infer_to_train_mapping = {}
 | |
|         self._mappings_built = True
 | |
|         # Prepare placeholders
 | |
|         place_holders = ["weight"]
 | |
| 
 | |
|         # Initialize mapping dictionary
 | |
|         self._update_base_mappings("model")
 | |
|         self.infer_to_train_mapping = {}
 | |
| 
 | |
|         base_name = "model.layers"
 | |
| 
 | |
|         # Helper function to add layer mappings
 | |
|         def _add_layer_mappings(layer_idx: int):
 | |
|             # MoE specific mappings
 | |
|             self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate_weight"] = (
 | |
|                 f"{base_name}.{layer_idx}.mlp.gate.weight"
 | |
|             )
 | |
| 
 | |
|             if self.fd_config.moe_config.moe_use_aux_free:
 | |
|                 self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = (
 | |
|                     f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
 | |
|                 )
 | |
| 
 | |
|             # MoE experts mappings
 | |
|             for expert_idx in range(self.fd_config.moe_config.num_experts):
 | |
|                 for ph in place_holders:
 | |
|                     # up_gate_proj (up_gate_proj)
 | |
|                     up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.up_gate_proj_weight"
 | |
|                     if up_gate_proj_key not in self.infer_to_train_mapping:
 | |
|                         self.infer_to_train_mapping[up_gate_proj_key] = []
 | |
|                     self.infer_to_train_mapping[up_gate_proj_key].append(
 | |
|                         f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
 | |
|                     )
 | |
| 
 | |
|                     # down_proj (down_proj)
 | |
|                     down_proj_key = f"{base_name}.{layer_idx}.mlp.down_proj_weight"
 | |
|                     if down_proj_key not in self.infer_to_train_mapping:
 | |
|                         self.infer_to_train_mapping[down_proj_key] = []
 | |
|                     self.infer_to_train_mapping[down_proj_key].append(
 | |
|                         f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
 | |
|                     )
 | |
| 
 | |
|         # Process MoE layers
 | |
|         for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
 | |
|             _add_layer_mappings(layer_idx)
 | |
| 
 | |
|         self._complete_missing_mappings()
 | |
| 
 | |
|         return self.infer_to_train_mapping
 | |
| 
 | |
| 
 | |
| class Qwen3ForCausalLMRL(Qwen3ForCausalLM, BaseRLModel):
 | |
|     """
 | |
|     Qwen3ForCausalLMRL
 | |
|     """
 | |
| 
 | |
|     _get_tensor_parallel_mappings = Qwen3PretrainedModel._get_tensor_parallel_mappings
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Qwen3ForCausalLMRL, self).__init__(fd_config)
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self) -> str:
 | |
|         """name"""
 | |
|         return "Qwen3ForCausalLMRL"
 | |
| 
 | |
|     def get_name_mappings_to_training(self, trainer_degree=None) -> Dict[str, str]:
 | |
| 
 | |
|         if self._mappings_built:
 | |
|             return self.infer_to_train_mapping
 | |
| 
 | |
|         self.infer_to_train_mapping = {}
 | |
|         self._mappings_built = True
 | |
|         # Prepare placeholders
 | |
|         place_holders = ["weight"]
 | |
| 
 | |
|         # Initialize mapping dictionary
 | |
|         self._update_base_mappings("model")
 | |
|         base_name = "model.layers"
 | |
| 
 | |
|         # Helper function to add layer mappings
 | |
|         def _add_layer_mappings(layer_idx):
 | |
|             # FFN mappings
 | |
|             for ph in place_holders:
 | |
|                 self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = (
 | |
|                     f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
 | |
|                 )
 | |
| 
 | |
|         for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
 | |
|             _add_layer_mappings(layer_idx)
 | |
| 
 | |
|         self._complete_missing_mappings()
 | |
| 
 | |
|         return self.infer_to_train_mapping
 | 
