mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* support mm prefix caching * update code * fix mm_hashes * support encoder cache * add encoder cache * update code * update encoder cache * fix features bug * fix worker bug * support processor cache, need to optimize yet * refactor multimodal data cache * update code * update code * update v1 scheduler * update code * update code * update codestyle * support turn off processor cache and encoder cache * update pre-commit * fix code * solve review * update code * update code * update test case * set processor cache in GiB * update test case * support mm prefix caching for qwen model * fix code style check * update pre-commit * fix unit test * fix unit test * add ci test case * fix rescheduled bug * change text_after_process to prompt_tokens * fix unit test * fix chat template * change model path * [EP] fix adapter bugs (#4572) * Update expert_service.py * Update common_engine.py * Update expert_service.py * fix v1 hang bug (#4573) * fix import image_ops error on some platforms (#4559) * [CLI]Update parameters in bench latecy cli tool and fix collect-env cli tool (#4558) * add collect-env * del files * [Graph Optimization] Add dy_runnable and introduce cudagraph_switch_threshold for cudagraph mode switching (#4578) * add new branch for sot * reorder * fix batch bug * [XPU]Moe uses a new operator (#4585) * [XPU]Moe uses a new operator * [XPU]Moe uses a new operator * update response * [Feature] Support Paddle-OCR (#4396) * init * update code * fix code style & disable thinking * adapt for common_engine.update_mm_requests_chunk_size * use 3d rope * use flash_attn_unpadded * opt siglip * update to be compatible with the latest codebase * fix typo * optim OCR performance * fix bug * fix bug * fix bug * fix bug * normlize name * modify xpu rope * revert logger * fix bug * fix bug * fix bug * support default_v1 * optim performance * fix bug --------- Co-authored-by: root <root@szzj-acg-tge1-fdda9.szzj.baidu.com> Co-authored-by: zhangyue66 <zhangyue66@baidu.com> * [DataProcessor] add reasoning_tokens into usage info (#4520) * add reasoning_tokens into usage info initial commit * add unit tests * modify unit test * modify and add unit tests * fix unit test * move steam usage to processor * modify processor * modify test_logprobs * modify test_logprobs.py * modify stream reasoning tokens accumulation * fix unit test * perf: Optimize task queue communication from engine to worker (#4531) * perf: Optimize task queue communication from engine to worker * perf: get_tasks to numpy * perf: get_tasks remove to_numpy * fix: request & replace ENV * remove test_e2w_perf.py * fix code style --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com> * Clean up ports after processing results (#4587) * [CI] Add /re-run command in PR comments to restart failed CI workflows (#4593) * [Others] api server exits when worker process is dead (#3271) * [fix] fix terminal hangs when worker process is dead * [chore] change sleep time of monitor * [chore] remove redundant comments * update docs --------- Co-authored-by: ApplEOFDiscord <wwy640130@163.com> Co-authored-by: ApplEOFDiscord <31272106+ApplEOFDiscord@users.noreply.github.com> Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com> Co-authored-by: yinwei <yinwei_hust@163.com> Co-authored-by: JYChen <zoooo0820@qq.com> Co-authored-by: qwes5s5 <45442318+qwes5s5@users.noreply.github.com> Co-authored-by: Ryan <zihaohuang@aliyun.com> Co-authored-by: yyssys <atyangshuang@foxmail.com> Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com> Co-authored-by: root <root@szzj-acg-tge1-fdda9.szzj.baidu.com> Co-authored-by: zhangyue66 <zhangyue66@baidu.com> Co-authored-by: kxz2002 <115912648+kxz2002@users.noreply.github.com> Co-authored-by: SunLei <sunlei5788@gmail.com> Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com> Co-authored-by: Zhang Yulong <35552275+ZhangYulongg@users.noreply.github.com> Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com> Co-authored-by: 李泳桦 <39643373+liyonghua0910@users.noreply.github.com>
589 lines
24 KiB
Python
589 lines
24 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
""" process.py """
|
||
import copy
|
||
import os
|
||
import pickle
|
||
from collections import defaultdict
|
||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
||
import numpy as np
|
||
import zmq
|
||
from paddleformers.transformers.image_utils import ChannelDimension
|
||
from PIL import Image
|
||
|
||
from fastdeploy.engine.request import ImagePosition
|
||
from fastdeploy.entrypoints.chat_utils import parse_chat_messages
|
||
from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
|
||
from fastdeploy.input.utils import IDS_TYPE_FLAG
|
||
from fastdeploy.multimodal.hasher import MultimodalHasher
|
||
from fastdeploy.utils import data_processor_logger
|
||
|
||
from .image_preprocessor.image_preprocessor_adaptive import AdaptiveImageProcessor
|
||
from .process_video import read_frames_decord, read_video_decord
|
||
from .utils.render_timestamp import render_frame_timestamp
|
||
|
||
|
||
def fancy_print(input_ids, tokenizer, image_patch_id=None):
|
||
"""
|
||
input_ids: input_ids
|
||
tokenizer: the tokenizer of models
|
||
"""
|
||
i = 0
|
||
res = ""
|
||
text_ids = []
|
||
real_image_token_len = 0
|
||
while i < len(input_ids):
|
||
if input_ids[i] == image_patch_id:
|
||
if len(text_ids) > 0:
|
||
res += tokenizer.decode(text_ids)
|
||
text_ids = []
|
||
|
||
real_image_token_len += 1
|
||
else:
|
||
if real_image_token_len != 0:
|
||
res += f"<|IMAGE@{real_image_token_len}|>"
|
||
real_image_token_len = 0
|
||
|
||
text_ids.append(input_ids[i])
|
||
|
||
i += 1
|
||
if len(text_ids) > 0:
|
||
|
||
res += tokenizer.decode(text_ids)
|
||
text_ids = []
|
||
return res
|
||
|
||
|
||
class DataProcessor:
|
||
"""
|
||
Processes multimodal chat messages into model-ready inputs,
|
||
handling text, images, and videos with 3D positional embeddings.
|
||
"""
|
||
|
||
CLS_TOKEN = "<|begin_of_sentence|>"
|
||
SEP_TOKEN = "<|end_of_sentence|>"
|
||
EOS_TOKEN = "</s>"
|
||
IMG_START = "<|IMAGE_START|>"
|
||
IMG_END = "<|IMAGE_END|>"
|
||
VID_START = "<|VIDEO_START|>"
|
||
VID_END = "<|VIDEO_END|>"
|
||
|
||
def __init__(
|
||
self,
|
||
tokenizer_name: str,
|
||
image_preprocessor_name: str,
|
||
enable_processor_cache: bool = False,
|
||
spatial_conv_size: int = 2,
|
||
temporal_conv_size: int = 2,
|
||
image_min_pixels: int = 4 * 28 * 28,
|
||
image_max_pixels: int = 6177 * 28 * 28,
|
||
video_min_pixels: int = 299 * 28 * 28,
|
||
video_max_pixels: int = 1196 * 28 * 28,
|
||
video_target_frames: int = -1,
|
||
video_frames_sample: str = "leading",
|
||
video_max_frames: int = 180,
|
||
video_min_frames: int = 16,
|
||
video_fps: int = 2,
|
||
**kwargs,
|
||
) -> None:
|
||
# Tokenizer and image preprocessor
|
||
self.model_name_or_path = tokenizer_name
|
||
self._load_tokenizer()
|
||
self.tokenizer.ignored_index = -100
|
||
self.image_preprocessor = AdaptiveImageProcessor.from_pretrained(image_preprocessor_name)
|
||
self.enable_processor_cache = enable_processor_cache
|
||
|
||
# Convolution sizes for patch aggregation
|
||
self.spatial_conv_size = spatial_conv_size
|
||
self.temporal_conv_size = temporal_conv_size
|
||
|
||
# Pixel constraints
|
||
self.image_min_pixels = image_min_pixels
|
||
self.image_max_pixels = image_max_pixels
|
||
self.video_min_pixels = video_min_pixels
|
||
self.video_max_pixels = video_max_pixels
|
||
|
||
# Video sampling parameters
|
||
self.target_frames = video_target_frames
|
||
self.frames_sample = video_frames_sample
|
||
self.max_frames = video_max_frames
|
||
self.min_frames = video_min_frames
|
||
self.fps = video_fps
|
||
|
||
# Special tokens and IDs
|
||
self.cls_token = self.CLS_TOKEN
|
||
self.sep_token = self.SEP_TOKEN
|
||
self.eos_token = self.EOS_TOKEN
|
||
self.image_start = self.IMG_START
|
||
self.image_end = self.IMG_END
|
||
self.video_start = self.VID_START
|
||
self.video_end = self.VID_END
|
||
self.image_patch_id = self.tokenizer.convert_tokens_to_ids("<|IMAGE_PLACEHOLDER|>")
|
||
self.image_start_id = self.tokenizer.convert_tokens_to_ids(self.image_start)
|
||
self.video_start_id = self.tokenizer.convert_tokens_to_ids(self.video_start)
|
||
self.sep_token_id = self.tokenizer.convert_tokens_to_ids(self.sep_token)
|
||
self.eos_token_id = self.tokenizer.convert_tokens_to_ids(self.eos_token)
|
||
|
||
self.token_type_mapping = self._build_token_type_mapping()
|
||
self.is_training = True
|
||
self.role_prefixes = {
|
||
"system": "",
|
||
"user": "User: ",
|
||
"bot": "Assistant: ",
|
||
"assistant": "Assistant: ",
|
||
}
|
||
|
||
def _build_token_type_mapping(self) -> Dict[Any, int]:
|
||
mapping = defaultdict(lambda: IDS_TYPE_FLAG["text"])
|
||
for token in (
|
||
self.IMG_START,
|
||
self.IMG_END,
|
||
self.VID_START,
|
||
self.VID_END,
|
||
):
|
||
mapping[token] = IDS_TYPE_FLAG["image"]
|
||
mapping[self.image_patch_id] = IDS_TYPE_FLAG["image"]
|
||
return mapping
|
||
|
||
def train(self) -> None:
|
||
"""Enable training mode (produces labels)."""
|
||
self.is_training = True
|
||
|
||
def eval(self) -> None:
|
||
"""Enable evaluation mode (doesn't produce labels)."""
|
||
self.is_training = False
|
||
|
||
def text2ids(self, text, images=None, videos=None, image_uuid=None, video_uuid=None):
|
||
"""
|
||
Convert chat text into model inputs.
|
||
|
||
Args:
|
||
text (str): The chat text containing placeholders for images and videos.
|
||
images (list, optional): List of images to be processed and inserted at image placeholders.
|
||
videos (list, optional): List of videos to be processed and inserted at video placeholders.
|
||
image_uuid (list, optional): List of unique identifiers for each image, used for caching or hashing.
|
||
video_uuid (list, optional): List of unique identifiers for each video, used for caching or hashing.
|
||
Returns:
|
||
dict: A dictionary with keys input_ids, token_type_ids, position_ids, images, grid_thw, image_type_ids, labels, etc.
|
||
"""
|
||
|
||
outputs = {
|
||
"input_ids": [],
|
||
"token_type_ids": [],
|
||
"position_ids": [],
|
||
"images": [],
|
||
"grid_thw": [],
|
||
"image_type_ids": [],
|
||
"labels": [],
|
||
"cur_position": 0,
|
||
"video_cnt": 0,
|
||
"mm_positions": [],
|
||
"mm_hashes": [],
|
||
}
|
||
|
||
IMAGE_PLACEHOLDER = "<|image@placeholder|>"
|
||
VIDEO_PLACEHOLDER = "<|video@placeholder|>"
|
||
IMAGE_PLACEHOLDER_LEN = len(IMAGE_PLACEHOLDER)
|
||
VIDEO_PLACEHOLDER_LEN = len(VIDEO_PLACEHOLDER)
|
||
st, image_idx, video_idx = 0, 0, 0
|
||
while st < len(text):
|
||
image_pos = text.find(IMAGE_PLACEHOLDER, st)
|
||
image_pos = len(text) if image_pos == -1 else image_pos
|
||
video_pos = text.find(VIDEO_PLACEHOLDER, st)
|
||
video_pos = len(text) if video_pos == -1 else video_pos
|
||
ed = min(image_pos, video_pos)
|
||
|
||
self._add_text(text[st:ed], outputs)
|
||
if ed == len(text):
|
||
break
|
||
|
||
if ed == image_pos:
|
||
image = images[image_idx]
|
||
uuid = image_uuid[image_idx] if image_uuid else None
|
||
if not isinstance(image, tuple):
|
||
self._add_image(image, outputs, uuid)
|
||
else:
|
||
# cached images are already processed
|
||
self._add_processed_image(image, outputs, uuid)
|
||
image_idx += 1
|
||
st = ed + IMAGE_PLACEHOLDER_LEN
|
||
else:
|
||
item = videos[video_idx]
|
||
uuid = video_uuid[video_idx] if video_uuid else None
|
||
if not isinstance(item, tuple):
|
||
if isinstance(item, dict):
|
||
frames = self._load_and_process_video(item["video"], item)
|
||
else:
|
||
frames = self._load_and_process_video(item, {})
|
||
self._add_video(frames, outputs, uuid)
|
||
else:
|
||
# cached frames are already processed
|
||
self._add_processed_video(item, outputs, uuid)
|
||
video_idx += 1
|
||
st = ed + VIDEO_PLACEHOLDER_LEN
|
||
|
||
return outputs
|
||
|
||
def request2ids(
|
||
self, request: Dict[str, Any], tgts: List[str] = None
|
||
) -> Dict[str, Union[np.ndarray, List[np.ndarray], None]]:
|
||
"""
|
||
Convert chat messages into model inputs.
|
||
Returns a dict with input_ids, token_type_ids, position_ids, images, grid_thw, image_type_ids, labels.
|
||
"""
|
||
|
||
messages = parse_chat_messages(request.get("messages"))
|
||
mm_items = []
|
||
for msg in messages:
|
||
role = msg.get("role")
|
||
assert role in self.role_prefixes, f"Unsupported role: {role}"
|
||
content = msg.get("content")
|
||
if not isinstance(content, list):
|
||
content = [content]
|
||
for item in content:
|
||
if item.get("type") in ["image", "video"]:
|
||
mm_items.append(item)
|
||
|
||
missing_hashes, missing_idx = [], []
|
||
for idx, item in enumerate(mm_items):
|
||
if not item.get("data"):
|
||
# raw data not provided, should be retrieved from processor cache
|
||
missing_hashes.append(item.get("uuid"))
|
||
missing_idx.append(idx)
|
||
|
||
if len(missing_hashes) > 0 and not self.enable_processor_cache:
|
||
raise ValueError("Missing items cannot be retrieved without processor cache.")
|
||
|
||
if self.enable_processor_cache:
|
||
context = zmq.Context()
|
||
dealer = context.socket(zmq.DEALER)
|
||
dealer.connect("ipc:///dev/shm/processor_cache.ipc")
|
||
|
||
missing_items = self.get_processor_cache(dealer, missing_hashes)
|
||
for idx in range(len(missing_items)):
|
||
if not missing_items[idx]:
|
||
raise ValueError(f"Missing item {idx} not found in processor cache")
|
||
mm_items[missing_idx[idx]]["data"] = missing_items[idx]
|
||
|
||
images, videos = [], []
|
||
image_uuid, video_uuid = [], []
|
||
for item in mm_items:
|
||
if item.get("type") == "image":
|
||
images.append(item["data"])
|
||
image_uuid.append(item["uuid"])
|
||
elif item.get("type") == "video":
|
||
videos.append(item["data"])
|
||
video_uuid.append(item["uuid"])
|
||
else:
|
||
raise ValueError(f"Unsupported multimodal type: {item.get('type')}")
|
||
|
||
if self.tokenizer.chat_template is None:
|
||
raise ValueError("This model does not support chat template.")
|
||
|
||
chat_template_kwargs = request.get("chat_template_kwargs", {})
|
||
prompt = self.tokenizer.apply_chat_template(
|
||
request,
|
||
tokenize=False,
|
||
add_generation_prompt=request.get("add_generation_prompt", True),
|
||
**chat_template_kwargs,
|
||
)
|
||
request["prompt_tokens"] = prompt
|
||
|
||
outputs = self.text2ids(prompt, images, videos, image_uuid, video_uuid)
|
||
|
||
if self.enable_processor_cache:
|
||
missing_idx = set(missing_idx)
|
||
hashes_to_cache, items_to_cache = [], []
|
||
for idx in range(len(mm_items)):
|
||
if idx in missing_idx:
|
||
continue
|
||
meta = {}
|
||
t, h, w = outputs["grid_thw"][idx][0]
|
||
meta["thw"] = (t, h, w)
|
||
hashes_to_cache.append(outputs["mm_hashes"][idx])
|
||
items_to_cache.append((outputs["images"][idx], meta))
|
||
self.update_processor_cache(dealer, hashes_to_cache, items_to_cache)
|
||
|
||
if self.is_training:
|
||
assert tgts, "Training must give tgt"
|
||
self._extract_labels(outputs, tgts)
|
||
|
||
return outputs
|
||
|
||
def _add_special_token(self, token: Union[str, int], outputs: Dict) -> None:
|
||
token_id = token if isinstance(token, int) else self.tokenizer.convert_tokens_to_ids(token)
|
||
outputs["input_ids"].append(token_id)
|
||
outputs["token_type_ids"].append(self.token_type_mapping[token])
|
||
pos = outputs["cur_position"]
|
||
outputs["position_ids"].append([pos] * 3)
|
||
outputs["cur_position"] += 1
|
||
|
||
def _add_text(self, tokens, outputs: Dict) -> None:
|
||
if isinstance(tokens, str):
|
||
tokens = self.tokenizer.encode(tokens, add_special_tokens=False)["input_ids"]
|
||
outputs["input_ids"].extend(tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * len(tokens))
|
||
|
||
start = outputs["cur_position"]
|
||
for i in range(len(tokens)):
|
||
outputs["position_ids"].append([start + i] * 3)
|
||
outputs["cur_position"] += len(tokens)
|
||
|
||
def _add_image(self, img, outputs: Dict, uuid: Optional[str]) -> None:
|
||
patches_h, patches_w = self.image_preprocessor.get_smarted_resize(
|
||
img.height,
|
||
img.width,
|
||
min_pixels=self.image_min_pixels,
|
||
max_pixels=self.image_max_pixels,
|
||
)[1]
|
||
num_tokens = (patches_h * patches_w) // (self.spatial_conv_size**2)
|
||
|
||
outputs["mm_positions"].append(ImagePosition(len(outputs["input_ids"]), num_tokens))
|
||
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
|
||
|
||
pos_ids = self._compute_3d_positions(1, patches_h, patches_w, outputs["cur_position"])
|
||
outputs["position_ids"].extend(pos_ids)
|
||
outputs["cur_position"] = np.max(pos_ids) + 1
|
||
|
||
# Preprocess pixels
|
||
ret = self.image_preprocessor.preprocess(
|
||
images=[img.convert("RGB")],
|
||
do_normalize=False,
|
||
do_rescale=False,
|
||
predetermined_grid_thw=np.array([[patches_h, patches_w]]),
|
||
do_convert_rgb=True,
|
||
input_data_format=ChannelDimension.LAST,
|
||
)
|
||
outputs["images"].append(ret["pixel_values"])
|
||
if not uuid:
|
||
outputs["mm_hashes"].append(MultimodalHasher.hash_features(ret["pixel_values"]))
|
||
else:
|
||
outputs["mm_hashes"].append(uuid)
|
||
outputs["grid_thw"].append(ret["image_grid_thw"])
|
||
outputs["image_type_ids"].append(0)
|
||
|
||
def _add_processed_image(self, img_cache: Tuple[np.ndarray, dict], outputs: Dict, uuid: str) -> None:
|
||
img, meta = img_cache
|
||
num_tokens = img.shape[0] // (self.spatial_conv_size**2)
|
||
|
||
outputs["mm_positions"].append(ImagePosition(len(outputs["input_ids"]), num_tokens))
|
||
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
|
||
|
||
_, h, w = meta["thw"]
|
||
pos_ids = self._compute_3d_positions(1, h, w, outputs["cur_position"])
|
||
outputs["position_ids"].extend(pos_ids)
|
||
outputs["cur_position"] = np.max(pos_ids) + 1
|
||
|
||
outputs["images"].append(img)
|
||
outputs["mm_hashes"].append(uuid)
|
||
outputs["grid_thw"].append(np.array([[1, h, w]]))
|
||
outputs["image_type_ids"].append(0)
|
||
|
||
def _add_video(self, frames, outputs: Dict, uuid: Optional[str]) -> None:
|
||
patches_h, patches_w = self.image_preprocessor.get_smarted_resize(
|
||
frames[0].height,
|
||
frames[0].width,
|
||
min_pixels=self.video_min_pixels,
|
||
max_pixels=self.video_max_pixels,
|
||
)[1]
|
||
num_frames = len(frames)
|
||
num_tokens = (num_frames * patches_h * patches_w) // (self.spatial_conv_size**2 * self.temporal_conv_size)
|
||
|
||
pixel_stack = np.stack([np.array(f.convert("RGB")) for f in frames], axis=0)
|
||
ret = self.image_preprocessor.preprocess(
|
||
images=None,
|
||
videos=pixel_stack,
|
||
do_normalize=False,
|
||
do_rescale=False,
|
||
predetermined_grid_thw=np.array([[patches_h, patches_w]] * num_frames),
|
||
do_convert_rgb=True,
|
||
input_data_format=ChannelDimension.LAST,
|
||
)
|
||
outputs["images"].append(ret["pixel_values_videos"])
|
||
if not uuid:
|
||
outputs["mm_hashes"].append(MultimodalHasher.hash_features(ret["pixel_values_videos"]))
|
||
else:
|
||
outputs["mm_hashes"].append(uuid)
|
||
outputs["grid_thw"].append(ret["video_grid_thw"])
|
||
outputs["image_type_ids"].extend([1] * num_frames)
|
||
|
||
outputs["mm_positions"].append(ImagePosition(len(outputs["input_ids"]), num_tokens))
|
||
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
|
||
|
||
pos_ids = self._compute_3d_positions(num_frames, patches_h, patches_w, outputs["cur_position"])
|
||
outputs["position_ids"].extend(pos_ids)
|
||
outputs["cur_position"] = np.max(pos_ids) + 1
|
||
|
||
def _add_processed_video(self, frames_cache: Tuple[np.ndarray, dict], outputs: Dict, uuid: str) -> None:
|
||
frames, meta = frames_cache
|
||
num_tokens = frames.shape[0] // (self.spatial_conv_size**2 * self.temporal_conv_size)
|
||
|
||
t, h, w = meta["thw"]
|
||
outputs["images"].append(frames)
|
||
outputs["mm_hashes"].append(uuid)
|
||
outputs["grid_thw"].append(np.array([[t, h, w]]))
|
||
|
||
outputs["mm_positions"].append(ImagePosition(len(outputs["input_ids"]), num_tokens))
|
||
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
|
||
outputs["image_type_ids"].extend([1] * t)
|
||
|
||
pos_ids = self._compute_3d_positions(t, h, w, outputs["cur_position"])
|
||
outputs["position_ids"].extend(pos_ids)
|
||
outputs["cur_position"] = np.max(pos_ids) + 1
|
||
|
||
def _extract_labels(self, outputs: Dict, tgts: List[str]) -> None:
|
||
input_ids = copy.deepcopy(outputs["input_ids"])
|
||
labels = [self.tokenizer.ignored_index] * len(input_ids)
|
||
|
||
tgt_count = input_ids.count(self.sep_token_id)
|
||
assert tgt_count == len(tgts), f"len(tgts) != len(src) {len(tgts)} vs {tgt_count}"
|
||
|
||
tgt_index = 0
|
||
for i, token_id in enumerate(input_ids):
|
||
if token_id == self.sep_token_id:
|
||
labels_token = self.tokenizer.tokenize(tgts[tgt_index])
|
||
labels_token_id = self.tokenizer.convert_tokens_to_ids(labels_token)
|
||
labels[i - len(labels_token_id) : i] = labels_token_id
|
||
labels[i] = self.eos_token_id # </s>
|
||
tgt_index += 1
|
||
|
||
outputs["labels"] = labels
|
||
|
||
def _load_and_process_video(self, url: str, item: Dict) -> List[Image.Image]:
|
||
reader, meta, path = read_video_decord(url, save_to_disk=False)
|
||
|
||
video_frame_args = dict()
|
||
video_frame_args["fps"] = item.get("fps", self.fps)
|
||
video_frame_args["min_frames"] = item.get("min_frames", self.min_frames)
|
||
video_frame_args["max_frames"] = item.get("max_frames", self.max_frames)
|
||
video_frame_args["target_frames"] = item.get("target_frames", self.target_frames)
|
||
video_frame_args["frames_sample"] = item.get("frames_sample", self.frames_sample)
|
||
|
||
video_frame_args = self._set_video_frame_args(video_frame_args, meta)
|
||
|
||
frames_data, _, timestamps = read_frames_decord(
|
||
path,
|
||
reader,
|
||
meta,
|
||
target_frames=video_frame_args["target_frames"],
|
||
target_fps=video_frame_args["fps"],
|
||
frames_sample=video_frame_args["frames_sample"],
|
||
save_to_disk=False,
|
||
)
|
||
|
||
frames: List[Image.Image] = []
|
||
for img_array, ts in zip(frames_data, timestamps):
|
||
frames.append(render_frame_timestamp(img_array, ts))
|
||
# Ensure even number of frames for temporal conv
|
||
if len(frames) % 2 != 0:
|
||
frames.append(copy.deepcopy(frames[-1]))
|
||
return frames
|
||
|
||
def _set_video_frame_args(self, video_frame_args, video_meta):
|
||
"""
|
||
根据已知参数和优先级,设定最终的抽帧参数
|
||
"""
|
||
# 优先级:video_target_frames > (video_min_frames, video_max_frames) > video_fps
|
||
if video_frame_args["target_frames"] > 0:
|
||
if video_frame_args["fps"] >= 0:
|
||
raise ValueError("fps must be negative if target_frames is given")
|
||
if (
|
||
video_frame_args["min_frames"] > 0
|
||
and video_frame_args["target_frames"] < video_frame_args["min_frames"]
|
||
):
|
||
raise ValueError("target_frames must be larger than min_frames")
|
||
if (
|
||
video_frame_args["max_frames"] > 0
|
||
and video_frame_args["target_frames"] > video_frame_args["max_frames"]
|
||
):
|
||
raise ValueError("target_frames must be smaller than max_frames")
|
||
else:
|
||
if video_frame_args["fps"] < 0:
|
||
raise ValueError("Must provide either positive target_fps or positive target_frames.")
|
||
# 先计算在video_fps下抽到的帧数
|
||
frames_to_extract = int(video_meta["duration"] * video_frame_args["fps"])
|
||
# 判断是否在目标区间内,如果不是,则取target_frames为上界或下界
|
||
if (
|
||
video_frame_args["min_frames"] > 0
|
||
and video_frame_args["max_frames"] > 0
|
||
and video_frame_args["min_frames"] > video_frame_args["max_frames"]
|
||
):
|
||
raise ValueError("min_frames must be smaller than max_frames")
|
||
if video_frame_args["min_frames"] > 0 and frames_to_extract < video_frame_args["min_frames"]:
|
||
video_frame_args["target_frames"] = video_frame_args["min_frames"]
|
||
video_frame_args["fps"] = -1
|
||
if video_frame_args["max_frames"] > 0 and frames_to_extract > video_frame_args["max_frames"]:
|
||
video_frame_args["target_frames"] = video_frame_args["max_frames"]
|
||
video_frame_args["fps"] = -1
|
||
|
||
return video_frame_args
|
||
|
||
def _compute_3d_positions(self, t: int, h: int, w: int, start_idx: int) -> List[List[int]]:
|
||
# Downsample time if needed
|
||
t_eff = t // self.temporal_conv_size if t != 1 else 1
|
||
gh, gw = h // self.spatial_conv_size, w // self.spatial_conv_size
|
||
time_idx = np.repeat(np.arange(t_eff), gh * gw)
|
||
h_idx = np.tile(np.repeat(np.arange(gh), gw), t_eff)
|
||
w_idx = np.tile(np.arange(gw), t_eff * gh)
|
||
|
||
coords = list(zip(time_idx, h_idx, w_idx))
|
||
return [[start_idx + ti, start_idx + hi, start_idx + wi] for ti, hi, wi in coords]
|
||
|
||
def _load_tokenizer(self):
|
||
"""
|
||
load tokenizer
|
||
|
||
Returns:
|
||
tokenizer (AutoTokenizer)
|
||
"""
|
||
vocab_file_names = [
|
||
"tokenizer.model",
|
||
"spm.model",
|
||
"ernie_token_100k.model",
|
||
]
|
||
for i in range(len(vocab_file_names)):
|
||
if os.path.exists(os.path.join(self.model_name_or_path, vocab_file_names[i])):
|
||
Ernie4_5Tokenizer.resource_files_names["vocab_file"] = vocab_file_names[i]
|
||
break
|
||
self.tokenizer = Ernie4_5Tokenizer.from_pretrained(self.model_name_or_path)
|
||
|
||
def get_processor_cache(self, socket, mm_hashes: list[str]) -> list:
|
||
"""
|
||
get cache correspond to given hash values
|
||
"""
|
||
req = pickle.dumps(mm_hashes)
|
||
socket.send_multipart([b"", req])
|
||
_, resp = socket.recv_multipart()
|
||
mm_items = pickle.loads(resp)
|
||
data_processor_logger.info(f"Get cache of mm_hashes: {mm_hashes}")
|
||
|
||
return mm_items
|
||
|
||
def update_processor_cache(self, socket, mm_hashes: list[str], mm_items):
|
||
"""
|
||
update cache data
|
||
"""
|
||
req = pickle.dumps((mm_hashes, mm_items))
|
||
socket.send_multipart([b"", req])
|
||
data_processor_logger.info(f"Update cache of mm_hashes: {mm_hashes}")
|