Files
FastDeploy/fastdeploy/cache_manager/multimodal_cache_manager.py
kevin 8aab4e367f [Feature] mm support prefix cache (#4134)
* support mm prefix caching

* update code

* fix mm_hashes

* support encoder cache

* add encoder cache

* update code

* update encoder cache

* fix features bug

* fix worker bug

* support processor cache, need to optimize yet

* refactor multimodal data cache

* update code

* update code

* update v1 scheduler

* update code

* update code

* update codestyle

* support turn off processor cache and encoder cache

* update pre-commit

* fix code

* solve review

* update code

* update code

* update test case

* set processor cache in GiB

* update test case

* support mm prefix caching for qwen model

* fix code style check

* update pre-commit

* fix unit test

* fix unit test

* add ci test case

* fix rescheduled bug

* change text_after_process to prompt_tokens

* fix unit test

* fix chat template

* change model path

* [EP] fix adapter bugs (#4572)

* Update expert_service.py

* Update common_engine.py

* Update expert_service.py

* fix v1 hang bug (#4573)

* fix import image_ops error on some platforms (#4559)

* [CLI]Update parameters in bench latecy cli tool and fix collect-env cli tool (#4558)

* add collect-env

* del files

* [Graph Optimization] Add dy_runnable and introduce cudagraph_switch_threshold for cudagraph mode switching (#4578)

* add new branch for sot

* reorder

* fix batch bug

* [XPU]Moe uses a new operator (#4585)

* [XPU]Moe uses a new operator

* [XPU]Moe uses a new operator

* update response

* [Feature] Support Paddle-OCR (#4396)

* init

* update code

* fix code style & disable thinking

* adapt for common_engine.update_mm_requests_chunk_size

* use 3d rope

* use flash_attn_unpadded

* opt siglip

* update to be compatible with the latest codebase

* fix typo

* optim OCR performance

* fix bug

* fix bug

* fix bug

* fix bug

* normlize name

* modify xpu rope

* revert logger

* fix bug

* fix bug

* fix bug

* support default_v1

* optim performance

* fix bug

---------

Co-authored-by: root <root@szzj-acg-tge1-fdda9.szzj.baidu.com>
Co-authored-by: zhangyue66 <zhangyue66@baidu.com>

* [DataProcessor] add reasoning_tokens into usage info (#4520)

* add reasoning_tokens into usage info initial commit

* add unit tests

* modify unit test

* modify and add unit tests

* fix unit test

* move steam usage to processor

* modify processor

* modify test_logprobs

* modify test_logprobs.py

* modify stream reasoning tokens accumulation

* fix unit test

* perf: Optimize task queue communication from engine to worker (#4531)

* perf: Optimize task queue communication from engine to worker

* perf: get_tasks to numpy

* perf: get_tasks remove to_numpy

* fix: request & replace ENV

* remove test_e2w_perf.py

* fix code style

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* Clean up ports after processing results (#4587)

* [CI] Add /re-run command in PR comments to restart failed CI workflows (#4593)

* [Others] api server exits when worker process is dead (#3271)

* [fix] fix terminal hangs when worker process is dead

* [chore] change sleep time of monitor

* [chore] remove redundant comments

* update docs

---------

Co-authored-by: ApplEOFDiscord <wwy640130@163.com>
Co-authored-by: ApplEOFDiscord <31272106+ApplEOFDiscord@users.noreply.github.com>
Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
Co-authored-by: yinwei <yinwei_hust@163.com>
Co-authored-by: JYChen <zoooo0820@qq.com>
Co-authored-by: qwes5s5 <45442318+qwes5s5@users.noreply.github.com>
Co-authored-by: Ryan <zihaohuang@aliyun.com>
Co-authored-by: yyssys <atyangshuang@foxmail.com>
Co-authored-by: ming1753 <61511741+ming1753@users.noreply.github.com>
Co-authored-by: root <root@szzj-acg-tge1-fdda9.szzj.baidu.com>
Co-authored-by: zhangyue66 <zhangyue66@baidu.com>
Co-authored-by: kxz2002 <115912648+kxz2002@users.noreply.github.com>
Co-authored-by: SunLei <sunlei5788@gmail.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
Co-authored-by: Zhang Yulong <35552275+ZhangYulongg@users.noreply.github.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
Co-authored-by: 李泳桦 <39643373+liyonghua0910@users.noreply.github.com>
2025-10-27 17:39:51 +08:00

164 lines
5.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import pickle
import threading
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Any, Tuple
import numpy as np
import zmq
from fastdeploy import envs
from fastdeploy.engine.request import ImagePosition
from fastdeploy.utils import get_logger
logger = get_logger("prefix_cache_manager", "cache_manager.log")
class MultimodalLRUCache(ABC):
"""
General lru cache for multimodal data
"""
def __init__(self, max_cache_size):
self.cache = OrderedDict()
self.current_cache_size = 0
self.max_cache_size = max_cache_size
def apply_cache(self, mm_hashes: list[str], mm_items: list[Any]) -> list[str]:
"""
apply data cache, return evicted data
"""
assert len(mm_hashes) == len(mm_items), "mm_hashes and mm_items should have same length"
evicted_hashes = []
for idx in range(len(mm_hashes)):
if mm_hashes[idx] in self.cache:
self.cache.move_to_end(mm_hashes[idx])
else:
item_size = self.get_item_size(mm_items[idx])
if self.current_cache_size + item_size >= self.max_cache_size:
if item_size > self.max_cache_size:
# cannot be inserted even if we clear all cached data, skip it directly
continue
needed = item_size - (self.max_cache_size - self.current_cache_size)
evicted_hashes.extend(self.evict_cache(needed))
self.cache[mm_hashes[idx]] = mm_items[idx]
self.current_cache_size += item_size
return evicted_hashes
def evict_cache(self, needed: int) -> list[str]:
"""
evict data cache with needed size
"""
reduced_size, evicted_hashes = 0, []
while reduced_size < needed and len(self.cache):
mm_hash, mm_item = self.cache.popitem(last=False)
evicted_hashes.append(mm_hash)
reduced_size += self.get_item_size(mm_item)
self.current_cache_size -= self.get_item_size(mm_item)
return evicted_hashes
def get_cache(self, mm_hashes: list[str]) -> list[Any]:
"""
get cached data correspond to given hash values
"""
mm_items = []
for mm_hash in mm_hashes:
if mm_hash not in self.cache:
mm_items.append(None)
continue
mm_items.append(self.cache[mm_hash])
return mm_items
def clear_cache(self):
"""
clear all cached data
"""
evicted_hashes = list(self.cache.keys())
self.cache.clear()
self.current_cache_size = 0
return evicted_hashes
@abstractmethod
def get_item_size(self, item: Any) -> int:
raise NotImplementedError("Subclasses must define how to get size of an item")
class EncoderCacheManager(MultimodalLRUCache):
"""
EncoderCacheManager is used to cache image features
"""
def __init__(self, max_encoder_cache):
super().__init__(max_encoder_cache)
def get_item_size(self, item: ImagePosition) -> int:
return item.length
class ProcessorCacheManager(MultimodalLRUCache):
"""
ProcessorCacheManager is used to cache processed data
"""
def __init__(self, max_processor_cache):
super().__init__(max_processor_cache)
self.context = zmq.Context()
self.router = self.context.socket(zmq.ROUTER)
self.router.setsockopt(zmq.SNDHWM, int(envs.FD_ZMQ_SNDHWM))
self.router.setsockopt(zmq.ROUTER_MANDATORY, 1)
self.router.setsockopt(zmq.SNDTIMEO, -1)
self.router.bind("ipc:///dev/shm/processor_cache.ipc")
self.poller = zmq.Poller()
self.poller.register(self.router, zmq.POLLIN)
self.handler_thread = threading.Thread(target=self.cache_request_handler, daemon=True)
self.handler_thread.start()
def get_item_size(self, item: Tuple[np.ndarray, dict]) -> int:
return item[0].nbytes
def cache_request_handler(self):
try:
while True:
events = dict(self.poller.poll())
if self.router in events:
client, _, content = self.router.recv_multipart()
req = pickle.loads(content)
if isinstance(req, tuple):
# apply cache request, in format of (mm_hashes, mm_items)
self.apply_cache(req[0], req[1])
logger.info(f"Apply processor cache of mm_hashes: {req[0]}")
else:
# get cache request
resp = self.get_cache(req)
logger.info(f"Get processor cache of mm_hashes: {req}")
self.router.send_multipart([client, b"", pickle.dumps(resp)])
except Exception as e:
logger.error(f"Error happened while handling processor cache request: {e}")